目录
综合评价的方法:层次分析、TOPSIS、灰色关联分析(还可用于系统分析)、模糊综合评价
经典集合、模糊集合
经典集合+特征函数
经典集合的基本属性:① 互斥性;② 确定性
模糊集合+隶属函数
模糊集合的表示方式
扎德表示法、向量、序偶
模糊集合的分类
极小型(递减,越小则越属于这个集合)、中间型、极大型(越大则越属于这个集合)
隶属函数的确定方法
模糊统计法
借助已有的客观尺度
指派法(题目给了数据的话)
自己选取隶属函数并确定参数:
模糊综合评价问题
引入三个集合:因素集(评价指标)、评语集(评价的结果或待选方案)、权重集(指标的权重)
目的:选出隶属度最大的评语集
一级模糊综合评价
步骤
- 确定因素集
- 确定评语集
- 确定因素集中各指标的权重
- 构成模糊综合判断矩阵:求各个指标对于各个评语的隶属度,构成 n×m 矩阵(n:指标;m:评语),矩阵的一行表示该指标对各个评语的隶属度,隶属度越大、越接近这个评语/方案
- 结合指标的权重,计算得出选择哪个评语/方案的结论
例:一级模糊评价(模糊统计法求隶属度)
例:一级模糊评价(指派法得到隶属函数)
每一行是一个指标,每一个指标都有对于评语的一个隶属函数
例:一级模糊评价(通过自己设计隶属函数实现指标正向化)⭐
例:二级模糊评价
矩阵 R 的行是指标、列是评语,元素是指标 i 对评语 j 的隶属度;
各指标权重是一个行向量
例:三级模糊评价