1.定义并初始化神经网络
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
print(net)
2.初始化优化器
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
3.通过state_dict保存并加载模型
# Specify a path
PATH = "state_dict_model.pt"
# Save
torch.save(net.state_dict(), PATH)
# Load
model = Net()
model.load_state_dict(torch.load(PATH))
model.eval()
4.保存并加载整个模型
# Specify a path
PATH = "entire_model.pt"
# Save
torch.save(net, PATH)
# Load
model = torch.load(PATH)
model.eval()
5.保存常规检查点
收集所有相关信息并建立字典。
# Additional information
EPOCH = 5
PATH = "model.pt"
LOSS = 0.4
torch.save({
'epoch': EPOCH,
'model_state_dict': net.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': LOSS,
}, PATH)
6.加载常规检查点
记住首先初始化模型和优化器,然后在本地加载字典。
model = Net()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
checkpoint = torch.load(PATH)
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
epoch = checkpoint['epoch']
loss = checkpoint['loss']
model.eval()
# - or -
model.train()