分治算法的基本思想是将一个规模为N的问题分解为K个规模较小的子问题,这些子问题相互独立且与原问题性质相同。求出子问题的解,就可得到原问题的解。即一种分目标完成程序算法,简单问题可用二分法完成。
力扣第169多数元素
class Solution {
private int countInRange(int[] nums, int num, int lo, int hi) {
int count = 0;
for (int i = lo; i <= hi; i++) {
if (nums[i] == num) {
count++;
}
}
return count;
}
private int majorityElementRec(int[] nums, int lo, int hi) {
if (lo == hi) {
return nums[lo];
}
int mid = (hi - lo) / 2 + lo;
int left = majorityElementRec(nums, lo, mid);
int right = majorityElementRec(nums, mid + 1, hi);
if (left == right) {
return left;
}
int leftCount = countInRange(nums, left, lo, hi);
int rightCount = countInRange(nums, right, lo, hi);
return leftCount > rightCount ? left : right;
}
public int majorityElement(int[] nums) {
return majorityElementRec(nums, 0, nums.length - 1);
}
}
力扣第53最大子序和
class Solution {
public class Status {
public int lSum, rSum, mSum, iSum;
public Status(int lSum, int rSum, int mSum, int iSum) {
this.lSum = lSum;
this.rSum = rSum;
this.mSum = mSum;
this.iSum = iSum;
}
}
public int maxSubArray(int[] nums) {
return getInfo(nums, 0, nums.length - 1).mSum;
}
public Status getInfo(int[] a, int l, int r) {
if (l == r) {
return new Status(a[l], a[l], a[l], a[l]);
}
int m = (l + r) >> 1;
Status lSub = getInfo(a, l, m);
Status rSub = getInfo(a, m + 1, r);
return pushUp(lSub, rSub);
}
public Status pushUp(Status l, Status r) {
int iSum = l.iSum + r.iSum;
int lSum = Math.max(l.lSum, l.iSum + r.lSum);
int rSum = Math.max(r.rSum, r.iSum + l.rSum);
int mSum = Math.max(Math.max(l.mSum, r.mSum), l.rSum + r.lSum);
return new Status(lSum, rSum, mSum, iSum);
}
}
951

被折叠的 条评论
为什么被折叠?



