Deblur-NeRF

Traceback (most recent call last): File "run_nerf.py", line 653, in <module> train() File "run_nerf.py", line 623, in train test_ssim = compute_img_metric(rgbs, target_rgb_ldr, 'ssim') 
File "/root/autodl-tmp/Deblur-NeRF/metrics.py", line 81, in compute_img_metric value, ssimmap = photometric["ssim"]( File "/root/miniconda3/lib/python3.8/site-packages/skimage/metrics/_structural_similarity.py", line 178, in structural_similarity raise ValueError( ValueError: win_size exceeds image extent. Either ensure that your images are at least 7x7; or pass win_size explicitly in the function call, with an odd value less than or equal to the smaller side of your images. If your images are multichannel (with color channels), set channel_axis to the axis number corresponding to the channels.

修改metrics.py 66行后的代码为:

    for i in range(batchsz):
        if metric in ["mse", "psnr"]:
            if mask is not None:
                im1 = im1 * mask[i]
                im2 = im2 * mask[i]
            value = photometric[metric](
                im1[i], im2[i]
            )
            if mask is not None:
                hei, wid, _ = im1[i].shape
                pixelnum = mask[i, ..., 0].sum()
                value = value - 10 * np.log10(hei * wid / pixelnum)
        elif metric in ["ssim"]:
            value, ssimmap = photometric["ssim"](
                im1[i], im2[i], multichannel=True, full=True, channel_axis=-1, data_range=im1[i].max()-im1[i].min()
            )
            # Ensure win_size does not exceed image dimensions
            # min_dim = min(im1[i].shape[0], im1[i].shape[1])
            # win_size = min(11, min_dim) if min_dim >= 7 else 3
            # value, ssimmap = photometric["ssim"](
            #     im1[i], im2[i], multichannel=True, full=True, win_size=win_size
            # )
            if mask is not None:
                value = (ssimmap * mask[i]).sum() / mask[i].sum()
        elif metric in ["lpips"]:
            value = photometric[metric](
                im1t[i:i + 1], im2t[i:i + 1]
            )
        else:
            raise NotImplementedError
        values.append(value)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值