46.1 深度卷积
- 分组卷积(grouped convolution)将输入和输出通道分割成多组,然后对每个组进行分别处理。在有限条件下,当组数等于通道数时,该卷积就是深度卷积,常用于当前的神经网络架构中
- 深度卷积对每个通道分别执行空间滤波,展示了与正常卷积非常不同的计算模式。因此,通常要向深度卷积提供单独实现,QNNPACK 包括一个高度优化版本 3×3 深度卷积。
- 深度卷积的传统实现是每次都在卷积核元素上迭代,然后将一个卷积核行和一个输入行的结果累加到输出行
- 对于一个 3×3 的深度卷积,此类实现将把每个输出行更新 9 次
- 在 QNNPACK 中,研究者计算所有 3×3 卷积核行和 3×3 输入行的结果,一次性累加到输出行,然后再处理下个输出行。
- QNNPACK 实现高性能的关键因素在于完美利用通用暂存器(GPR)来展开卷积核元素上的循环,同时避免在 hot loop 中重新加载地址寄存器
- 32-bit ARM 架构将实现限制在 14 个 GPR。在 3×3 深度卷积中,需要读取 9 个输入行和 9 个卷积核行。这意味着如果想完全展开循环必须存储 18 个地址
- 然而,实践中推断时卷积核不会发生变化。因此 Facebook 研究者使用之前在 CxKHxKW 中的滤波器