27.深度学习模型压缩方法-1

本文探讨了深度学习模型压缩的主要方法,包括前端和后端压缩的对比,重点介绍了网络剪枝技术,如层间、特征图、卷积核和核内剪枝,以及不同剪枝目标,旨在减小模型复杂度、提高泛化能力和运行效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 目前深度学习模型压缩方法主要分为更精细化模型设计、模型裁剪、核的稀疏化、量化、低秩分解、迁移学习等方法,而这些方法又可分为前端压缩和后端压缩

27.1 前端压缩和后端压缩对比

对比项目 前端压缩 后端压缩
含义 不会改变原始网络结构的压缩技术 会大程度上改变原始网络结构的压缩技术
主要方法 知识蒸馏、紧凑的模型结构设计、滤波器层面的剪枝 低秩近似、未加限制的剪枝、参数量化、二值网络
实现难度 较简单 较难
是否可逆 可逆 不可逆
成熟应用 剪枝 低秩近似、参数量化
待发展应用 知识蒸馏 二值网络

27.2 网络剪枝

深度学习模型因其稀疏性,可以被裁剪为结构精简的网络模型,具体包括结构性剪枝与非结构性剪枝。

<
事项 特点 举例
非结构化剪枝
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值