“0-1”分布
两点分布、伯努利分布
E ( X ) = p E(X)=p E(X)=p
D ( X ) = p ( 1 − p ) D(X)=p(1-p) D(X)=p(1−p)
二项分布
n n n重伯努利实验
X ∼ B ( n , p ) X\sim B(n,p) X∼B(n,p)
P ( X = k ) = C n k p k q n − k P(X=k)=C_n^kp^kq^{n-k} P(X=k)=Cnkpkqn−k
E ( X ) = n p E(X)=np E(X)=np
D ( X ) = n p ( 1 − p ) D(X)=np(1-p) D(X)=np(1−p)
超几何分布
n为次数,M为目标个数,N为总体个数: N = ( M ) + ( N − M ) N=(M)+(N-M) N=(M)+(N−M)
X ∼ H ( n , M , N ) X\sim H(n,M,N) X∼H(n,M,N)
P ( X = m ) = C M m C N − M n − m C N n P(X=m)=\frac{C_M^mC_{N-M}^{n-m}}{C_N^n} P(X=m)=CNnCMmCN−Mn−m
E ( X ) = n M N E(X)=\frac{nM}{N} E(X)=NnM
D ( X ) = ? D(X)=? D(X)=?
当 N − > ∞ N->\infty N−>∞时, X ∼ B ( n , M N ) X\sim B(n,\frac{M}{N}) X∼B(n,NM)
泊松Poisson分布
X ∼ P ( λ ) X\sim P(\lambda) X∼P(λ)
P ( X = k ) = P λ ( k ) = λ k k ! e − λ P(X=k)=P_\lambda(k)=\frac{\lambda^k}{k!}e^{-\lambda} P(X=k)=Pλ(k)=k!λke−λ
E ( X ) = D ( X ) = λ E(X)=D(X)=\lambda E(X)=D(X)=λ
n很大、p很小、np值不太大, C n k p k q n − k ≈ λ k k ! e − λ ( λ = n p ) C_n^kp^kq^{n-k}\approx\frac{\lambda^k}{k!}e^{-\lambda}\ \ \ \ \ (\lambda=np) Cnkpkqn−k≈k!λke−λ (λ=np)
几何分布
P ∼ G ( p ) P\sim G(p) P∼G(p)
P ( X = k ) = ( 1 − p ) k − 1 p = q k − 1 p P(X=k)=(1-p)^{k-1}p=q^{k-1}p P(X=k)=(1−p)k−1p=qk−1p
E ( X ) = 1 − p p E(X)=\frac{1-p}{p} E(X)=p1−p
D ( X ) = 1 − p p 2 D(X)=\frac{1-p}{p^2} D(X)=p21−p
均匀分布
X ∼ U ( a , b ) X\sim U(a,b) X∼U(a,b)
E ( X ) = a + b 2 E(X)=\frac{a+b}{2} E(X)=2a+b
D
(
X
)
=
(
b
−
a
)
2
12
D(X)=\frac{(b-a)^2}{12}
D(X)=12(b−a)2
KaTeX parse error: Unknown column alignment: * at position 29: … \begin{array}{*̲*lr**} \frac{1}…
KaTeX parse error: Unknown column alignment: * at position 29: … \begin{array}{*̲*lr**} \ 0, & x…
指数分布
X ∼ E ( λ ) X\sim E(\lambda) X∼E(λ)
E ( X ) = 1 λ E(X)=\frac{1}{\lambda} E(X)=λ1
D
(
X
)
=
1
λ
2
D(X)=\frac{1}{\lambda^2}
D(X)=λ21
KaTeX parse error: Unknown column alignment: * at position 29: … \begin{array}{*̲*lr**} \lambda …
KaTeX parse error: Unknown column alignment: * at position 29: … \begin{array}{*̲*lr**} 1-e^{-\l…
对任意 s > 0 , t > 0 s>0,t>0 s>0,t>0,有: P ( X > s + t ∣ X > s ) = P ( X > s + t ) P ( X > s ) = e − λ ( s + t ) e − λ s = P ( X > t ) P(X>s+t|X>s)=\frac{P(X>s+t)}{P(X>s)}=\frac{e^{-\lambda(s+t)}}{e^{-\lambda s} }=P(X>t) P(X>s+t∣X>s)=P(X>s)P(X>s+t)=e−λse−λ(s+t)=P(X>t)
如果用 X X X代表寿命,上式表明在已存活 s s s年的情况下,再存活 t t t年的概率只与 t t t有关。这种性质称为无后效性。实际中,随即服务系统的等候时间、电子元件的寿命都服从指数分布,指数分布在可靠性理论、排队理论应用广泛
正态分布
X ∼ N ( μ , σ 2 ) X\sim N(\mu,\sigma^2) X∼N(μ,σ2)
Φ ( − x ) = 1 − Φ ( x ) \Phi(-x)=1-\Phi(x) Φ(−x)=1−Φ(x)
Y = X − u σ ∼ N ( 0 , 1 ) Y=\frac{X-u}{\sigma}\sim N(0,1) Y=σX−u∼N(0,1)
F ( x ) = Φ ( x − u σ ) F(x)=\Phi(\frac{x-u}{\sigma}) F(x)=Φ(σx−u)