经典分类CNN模型
一、LeNet
理论+代码:https://blog.youkuaiyun.com/xjy104165/article/details/78218057
二、AlexNet
理论:https://blog.youkuaiyun.com/qq_24695385/article/details/80368618
代码:http://www.cnblogs.com/vipyoumay/p/7686230.html
注:LeNet与AlexNet比较:
理论:https://www.cnblogs.com/alexanderkun/p/6918045.html
代码:https://blog.youkuaiyun.com/OliverkingLi/article/details/73849228
三、VGG
理论:https://blog.youkuaiyun.com/whz1861/article/details/78111606
代码:https://blog.youkuaiyun.com/u013181595/article/details/80974210
四、GoogLeNet
GooLeNet V1理论:https://www.cnblogs.com/Allen-rg/p/5833919.html
GooLeNet V1、V2理论:https://blog.youkuaiyun.com/shuzfan/article/details/50738394
GooLeNet V1、V2、V3、V4理论:https://my.oschina.net/u/876354/blog/1637819
代码:https://blog.youkuaiyun.com/u012679707/article/details/80824889
五、ResNet
ResNet V1理论:https://my.oschina.net/u/876354/blog/1622896
ResNet V2理论:https://www.jianshu.com/p/9449ca5e8d40
代码:https://blog.youkuaiyun.com/u013181595/article/details/80990930
六、DenseNet
理论:Bottleneck + Transition
https://blog.youkuaiyun.com/u014380165/article/details/75142664/
代码:https://www.imooc.com/article/36508
七、ResNeXt
理论:https://www.jianshu.com/p/7478ce41e46b
代码:https://blog.youkuaiyun.com/zziahgf/article/details/78854456
八、全卷积网络-FCN(用于图像分割)
全卷积网络(FCN)则是从抽象的特征中恢复出每个像素所属的类别。即从图像级别的分类进一步延伸到像素级别的分类。
理论:https://www.cnblogs.com/gujianhan/p/6030639.html