做法:
- 考察SAM的基本概念,即各个状态的endpos集合的大小怎么求?
- 我们从parent树上自底向上跑,类似树的遍历(即回溯过程),去统计集合的大小即可。
AC代码:
#include<bits/stdc++.h>
#define IO ios_base::sync_with_stdio(0),cin.tie(0),cout.tie(0)
#define pb(x) push_back(x)
#define sz(x) (int)(x).size()
#define sc(x) scanf("%d",&x)
#define abs(x) ((x)<0 ? -(x) : x)
#define all(x) x.begin(),x.end(
#define mk(x,y) make_pair(x,y)
#define fin freopen("in.txt","r",stdin)
#define fout freopen("out.txt","w",stdout)
using namespace std;
typedef long long ll;
const int mod = 1e9+7;
const double PI = 4*atan(1.0);
const int maxm = 1e8+5;
const int maxn = 1e6+5;
const int INF = 0x3f3f3f3f;
char s[maxn];
int num[maxn<<1];
struct SuffixAutoMation
{
int last,cnt;//cnt表示状态
int trans[maxn<<1][26],slink[maxn<<1],l[maxn<<1];
int t[maxn<<1],a[maxn<<1];
inline void add(int x)
{
int p = last,np = ++cnt;last = np;l[np] = l[p]+1;
for(;p && !trans[p][x];p=slink[p]) trans[p][x] = np;
if(!p) slink[np] = 1;
else{
int q = trans[p][x];
if(l[p]+1 == l[q]) slink[np] = q;
else
{
int nq = ++cnt;l[nq] = l[p]+1;
memcpy(trans[nq],trans[q],sizeof(trans[q]));
slink[nq] = slink[q];
slink[q] = slink[np] = nq;
for(;trans[p][x] == q; p = slink[p]) trans[p][x] = nq;
}
}
num[np] = 1;
}
void build()
{
scanf("%s",s+1);
int len = strlen(s+1);
last = cnt = 1;
for(int i=1;i<=len;i++) add(s[i]-'a');
}
void topsort()
{
int ans = 0;
for(int i=1;i<=cnt;i++) t[l[i]]++;
for(int i=1;i<=cnt;i++) t[i]+=t[i-1];
for(int i=1;i<=cnt;i++) a[t[l[i]]--] = i;
for(int i=cnt;i>=1;i--){ //在parent树上,自底向上跑
int x = a[i];
num[slink[x]]+=num[x];
if(num[x]>1) ans = max(ans,l[x]*num[x]);
}
printf("%d\n",ans);
}
}sam;
int main()
{
// fin;
// IO;
sam.build();
sam.topsort();
return 0;
}