半导体物理-Si晶体生长方向<2>

Si(硅)晶体的生长方向是一个重要的概念,尤其在半导体工业中。这个概念涉及到晶体在生长过程中原子排列的方向,对晶体的性质和应用有重大影响。让我为您详细解释:

  1. 晶体生长方向的定义:

    • 晶体生长方向指的是晶体在形成过程中,新的原子层沿着特定晶向堆积的方向。
    • 这个方向通常用密勒指数来表示,如 <100>、<110>、<111> 等。
  2. Si晶体的常见生长方向:

    • <100>:沿着立方晶格的边生长
    • <110>:沿着立方晶格的面对角线生长
    • <111>:沿着立方晶格的体对角线生长
  3. 生长方向的重要性:

    • 影响晶体的物理和电学性质
    • 决定了晶体的表面特性和加工性能
    • 对半导体器件的性能有直接影响
  4. 在半导体工业中的应用:

    • 不同生长方向的Si晶体用于制造不同类型的半导体器件
    • 例如,<100>方向的Si晶片常用于制造CMOS器件
  5. 生长方向的选择:

    • 根据具体应用需求选择合适的生长方向
    • 考虑因素包括晶体缺陷、表面平整度、电子迁移率等
  6. 生长方向的控制:

    • 通过控制生长条件(如温度、压力、气氛)来影响生长方向
    • 使用特定取向的种子晶体来引导生长

理解Si晶体的生长方向对于半导体材料的研究和应用非常重要,它直接影响了最终器件的性能和制造工艺。在实际应用中,选择适当的生长方向可以优化器件性能,提高产品质量。

100方向

在这里插入图片描述

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.art3d import Line3DCollection
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

def calculate_distance(atom1, atom2):
    return np.sqrt(np.sum((np.array(atom1) - np.array(atom2))**2))

def plot_silicon_double_unit_cell():
    fig = plt.figure(figsize=(12, 10))
    ax = fig.add_subplot(111, projection="3d")

    vertices = np.array([
        [0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0],
        [0, 0, 1], [1, 0, 1], [1, 1, 1], [0, 1, 1],
    ])

    face_center_atoms = np.array([
        [0.5, 0, 0], [0.5, 1, 0], [0.5, 0, 1], [0.5, 1, 1],
        [0, 0.5, 0], [1, 0.5, 0], [0, 0.5, 1], [1, 0.5, 1],
        [0, 0, 0.5], [1, 0, 0.5], [1, 1, 0.5], [0, 1, 0.5],
    ])

    internal_atoms = np.array([
        [0.25, 0.25, 0.25],
        [0.75, 0.75, 0.25],
        [0.25, 0.75, 0.75],
        [0.75, 0.25, 0.75],
    ])

    all_atoms = np.vstack([vertices, face_center_atoms, internal_atoms])

    edges = [
        [0, 1], [1, 2], [2, 3], [3, 0],
        [4, 5], [5, 6], [6, 7], [7, 4],
        [0, 4], [1, 5], [2, 6], [3, 7]
    ]

    direction = [1, 0, 0]
    translation_vector = np.array(direction)

    vertices2 = vertices + translation_vector
    face_center_atoms2 = face_center_atoms + translation_vector
    internal_atoms2 = internal_atoms + translation_vector
    all_atoms2 = np.vstack([vertices2, face_center_atoms2, internal_atoms2])

    edge_lines1 = [[vertices[start], vertices[end]] for start, end in edges]
    edge_collection1 = Line3DCollection(edge_lines1, colors='black', linewidths=1)
    ax.add_collection3d(edge_collection1)

    edge_lines2 = [[vertices2[start], vertices2[end]] for start, end in edges]
    edge_collection2 = Line3DCollection(edge_lines2, colors='gray', linewidths=1)
    ax.add_collection3d(edge_collection2)

    ax.scatter(vertices[:, 0], vertices[:, 1], vertices[:, 2], color='blue', s=100, label="Corner Atom")
    ax.scatter(vertices2[:, 0], vertices2[:, 1], vertices2[:, 2], color='blue', s=100)

    ax.scatter(face_center_atoms[:, 0], face_center_atoms[:, 1], face_center_atoms[:, 2], color='green', s=100, label="Face Atom")
    ax.scatter(face_center_atoms2[:, 0], face_center_atoms2[:, 1], face_center_atoms2[:, 2], color='green', s=100)

    ax.scatter(internal_atoms[:, 0], internal_atoms[:, 1], internal_atoms[:, 2], color='red', s=100, label="Internal Atom")
    ax.scatter(internal_atoms2[:, 0], internal_atoms2[:, 1], internal_atoms2[:, 2], color='red', s=100)

    # 添加内部原子与最近4个原子的连线
    for internal_atom in np.vstack([internal_atoms, internal_atoms2]):
        distances = [calculate_distance(internal_atom, atom) for atom in np.vstack([all_atoms, all_atoms2])]
        nearest_indices = np.argsort(distances)[1:5]  # 排除自身
        for nearest_index in nearest_indices:
            nearest_atom = np.vstack([all_atoms, all_atoms2])[nearest_index]
            ax.plot([internal_atom[0], nearest_atom[0]],
                    [internal_atom[1], nearest_atom[1]],
                    [internal_atom[2], nearest_atom[2]], color='orange', linewidth=1)

    # 添加指定的连线
    specified_connections = [
        ([1.25, 0.25, 0.25], [1, 0, 0.5]),
        ([1.25, 0.25, 0.25], [1.5, 0, 0]),
        ([1.25, 0.75, 0.75], [1, 1, 0.5]),
        ([1.25, 0.75, 0.75], [1.5, 1, 1]),
    ]

    for start, end in specified_connections:
        ax.plot([start[0], end[0]],
                [start[1], end[1]],
                [start[2], end[2]], color='orange', linewidth=2, linestyle='--')

    arrow_start = np.array([0, 0, 0])
    arrow_end = translation_vector
    ax.quiver(arrow_start[0], arrow_start[1], arrow_start[2],
              arrow_end[0], arrow_end[1], arrow_end[2],
              color='purple', linewidth=2, arrow_length_ratio=0.1)

    mid_point = (arrow_start + arrow_end) / 2
    ax.text(mid_point[0], mid_point[1], mid_point[2], f"[{direction[0]}{direction[1]}{direction[2]}]", color='purple')

    max_range = np.array([vertices2[:, 0].max() - vertices[:, 0].min(),
                          vertices2[:, 1].max() - vertices[:, 1].min(),
                          vertices2[:, 2].max() - vertices[:, 2].min()]).max()
    mid_x = (vertices2[:, 0].max() + vertices[:, 0].min()) * 0.5
    mid_y = (vertices2[:, 1].max() + vertices[:, 1].min()) * 0.5
    mid_z = (vertices2[:, 2].max() + vertices[:, 2].min()) * 0.5
    ax.set_xlim(mid_x - max_range * 0.5, mid_x + max_range * 0.5)
    ax.set_ylim(mid_y - max_range * 0.5, mid_y + max_range * 0.5)
    ax.set_zlim(mid_z - max_range * 0.5, mid_z + max_range * 0.5)

    ax.set_xlabel("X")
    ax.set_ylabel("Y")
    ax.set_zlabel("Z")

    ax.legend(loc='upper left')

    plt.title(f"双晶硅晶胞 (Double Silicon Unit Cell) - [100] Growth Direction")
    plt.tight_layout()
    plt.show()

plot_silicon_double_unit_cell()

其他方向

在这里插入图片描述
在这里插入图片描述

import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d.art3d import Line3DCollection
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

def calculate_distance(atom1, atom2):
    """计算两点之间的欧几里得距离"""
    return np.sqrt(np.sum((np.array(atom1) - np.array(atom2))**2))

def plot_silicon_double_unit_cell(direction):
    fig = plt.figure(figsize=(12, 10))
    ax = fig.add_subplot(111, projection="3d")

    vertices = np.array([
        [0, 0, 0], [1, 0, 0], [1, 1, 0], [0, 1, 0],
        [0, 0, 1], [1, 0, 1], [1, 1, 1], [0, 1, 1],
    ])

    face_center_atoms = np.array([
        [0.5, 0, 0], [0.5, 1, 0], [0.5, 0, 1], [0.5, 1, 1],
        [0, 0.5, 0], [1, 0.5, 0], [0, 0.5, 1], [1, 0.5, 1],
        [0, 0, 0.5], [1, 0, 0.5], [1, 1, 0.5], [0, 1, 0.5],
    ])

    internal_atoms = np.array([
        [0.25, 0.25, 0.25],
        [0.75, 0.75, 0.25],
        [0.25, 0.75, 0.75],
        [0.75, 0.25, 0.75],
    ])

    all_atoms = np.vstack([vertices, face_center_atoms, internal_atoms])

    edges = [
        [0, 1], [1, 2], [2, 3], [3, 0],
        [4, 5], [5, 6], [6, 7], [7, 4],
        [0, 4], [1, 5], [2, 6], [3, 7]
    ]

    if direction == [1, 0, 0]:
        translation_vector = np.array([1, 0, 0])
    elif direction == [1, 1, 0]:
        translation_vector = np.array([1, 1, 0])
    elif direction == [1, 1, 1]:
        translation_vector = np.array([1, 1, 1])

    vertices2 = vertices + translation_vector
    face_center_atoms2 = face_center_atoms + translation_vector
    internal_atoms2 = internal_atoms + translation_vector
    all_atoms2 = all_atoms + translation_vector

    edge_lines1 = [[vertices[start], vertices[end]] for start, end in edges]
    edge_collection1 = Line3DCollection(edge_lines1, colors='black', linewidths=1)
    ax.add_collection3d(edge_collection1)

    edge_lines2 = [[vertices2[start], vertices2[end]] for start, end in edges]
    edge_collection2 = Line3DCollection(edge_lines2, colors='gray', linewidths=1)
    ax.add_collection3d(edge_collection2)

    ax.scatter(vertices[:, 0], vertices[:, 1], vertices[:, 2], color='blue', s=100, label="Corner Atom")
    ax.scatter(vertices2[:, 0], vertices2[:, 1], vertices2[:, 2], color='blue', s=100)

    ax.scatter(face_center_atoms[:, 0], face_center_atoms[:, 1], face_center_atoms[:, 2], color='green', s=100, label="Face Atom")
    ax.scatter(face_center_atoms2[:, 0], face_center_atoms2[:, 1], face_center_atoms2[:, 2], color='green', s=100)

    ax.scatter(internal_atoms[:, 0], internal_atoms[:, 1], internal_atoms[:, 2], color='red', s=100, label="Internal Atom")
    ax.scatter(internal_atoms2[:, 0], internal_atoms2[:, 1], internal_atoms2[:, 2], color='red', s=100)

    # 添加内部原子与最近4个原子的连线
    for internal_atom in np.vstack([internal_atoms, internal_atoms2]):
        distances = [calculate_distance(internal_atom, atom) for atom in np.vstack([all_atoms, all_atoms2])]
        nearest_indices = np.argsort(distances)[1:5]  # 排除自身
        for nearest_index in nearest_indices:
            nearest_atom = np.vstack([all_atoms, all_atoms2])[nearest_index]
            ax.plot([internal_atom[0], nearest_atom[0]],
                    [internal_atom[1], nearest_atom[1]],
                    [internal_atom[2], nearest_atom[2]], color='orange', linewidth=1)

    arrow_start = np.array([0, 0, 0])
    arrow_end = translation_vector
    ax.quiver(arrow_start[0], arrow_start[1], arrow_start[2],
              arrow_end[0], arrow_end[1], arrow_end[2],
              color='purple', linewidth=2, arrow_length_ratio=0.1)

    mid_point = (arrow_start + arrow_end) / 2
    ax.text(mid_point[0], mid_point[1], mid_point[2], f"[{direction[0]}{direction[1]}{direction[2]}]", color='purple')

    max_range = np.array([vertices2[:, 0].max() - vertices[:, 0].min(),
                          vertices2[:, 1].max() - vertices[:, 1].min(),
                          vertices2[:, 2].max() - vertices[:, 2].min()]).max()
    mid_x = (vertices2[:, 0].max() + vertices[:, 0].min()) * 0.5
    mid_y = (vertices2[:, 1].max() + vertices[:, 1].min()) * 0.5
    mid_z = (vertices2[:, 2].max() + vertices[:, 2].min()) * 0.5
    ax.set_xlim(mid_x - max_range * 0.5, mid_x + max_range * 0.5)
    ax.set_ylim(mid_y - max_range * 0.5, mid_y + max_range * 0.5)
    ax.set_zlim(mid_z - max_range * 0.5, mid_z + max_range * 0.5)

    ax.set_xlabel("X")
    ax.set_ylabel("Y")
    ax.set_zlabel("Z")

    ax.legend(loc='upper left')

    plt.title(f"双晶硅晶胞 (Double Silicon Unit Cell) - [{direction[0]}{direction[1]}{direction[2]}] Growth Direction")
    plt.tight_layout()
    plt.show()

# 调用函数绘制三种不同晶向的生长情况
directions = [[1, 0, 0], [1, 1, 0], [1, 1, 1]]
for direction in directions:
    plot_silicon_double_unit_cell(direction)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值