题意:写这种题目,(有翻译情况下)我的看题时间 = 想 + 敲代码,生无可恋.jpg
一个房间里有很多插座,一种类型的插座只能容纳一种类型的插头,还有一些适配器,使不同类型的插头可以插到某个插座上,适配器还可以嵌套使用,虽然适配器种类不多,但是可以无限提供,使尽可能多的用电器插上插座,那么最后会有几个用电器无法接上插头
思路:明显的,插座和插头一一对应,连边,cap = 1, 适配器可以使a - > b,连边inf,然后加个源点,加个汇点。
但是这题是真的坑,插头种类100,用电器对应的插头100,适配器可能有200个不同型号的玩意出现,还得加上用电器100,所以这个题起码得开到502个点: ),当然不知为什么我开到300多的时候交g++过了,最后折腾半天才发现这个问题。
而且我开始时有意识到用电器那里可能会有没出现的插头出现(样例嘛),但是根本没意识到适配器也有可能有没出现的插头.....
#include <cstdio>
#include <iostream>
#include <algorithm>
#include <cstring>
#include <string>
#include <queue>
#include <map>
using namespace std;
const int maxn = 550, maxe = maxn * maxn;
const int inf = 0x3f3f3f3f;
struct node
{
int to,next,cap,rev;
node(){}
node(int a,int b,int c,int d)
{to = a; next = b; cap = c; rev = d;}
}edge[maxe << 1];
int n , m , k , cnum , edgenum , s, t;
int h[maxn] , deg[maxn] , cur[maxn];
char did[maxn][30];
int dy[maxn];
string s1, s2;
map<string,int> id;
void init()
{
id.clear();
for(int i = 0; i < maxn; i++)
h[i] = -1;
cnum = 0;
edgenum = 0;
}
void add(int u,int v,int cap)
{
edge[edgenum] = node(v,h[u],cap,edgenum+1); h[u] = edgenum++;
edge[edgenum] = node(u,h[v],0,edgenum-1); h[v] = edgenum++;
}
void build()
{
cin >> k;
for(int i = 0; i < k; i++)
{
cin >> s1 >> s2;
if(id.count(s1) == 0) id[s1] = ++cnum;
if(id.count(s2) == 0) id[s2] = ++cnum;
add(id[s2] , id[s1] , inf);
}
s = 0, t = cnum + m + 1;
for(int i = 1; i <= m; i++) add(i + cnum , t , 1);
for(int i = 1; i <= m; i++)
add(dy[i] , i + cnum , 1 );
// cout << "cnum " << cnum << endl;
}
int bfs()
{
for(int i = s; i <= t; i++)
deg[i] = -1;
queue<int> q;
q.push(s); deg[s] = 0;
while(!q.empty())
{
int u = q.front(); q.pop();
for(int i = h[u]; ~i ; i = edge[i].next)
{
int v = edge[i].to,cap = edge[i].cap;
if(cap && deg[v] == -1)
{
deg[v] = deg[u] + 1;
q.push(v);
}
}
}
return deg[t] != -1;
}
int dfs(int u,int f)
{
if(u == t) return f;
for(int i = cur[u]; ~i; i = edge[i].next)
{
cur[u] = i;
int v = edge[i].to, cap = edge[i].cap, rev = edge[i].rev;
if(cap && deg[v] == deg[u] + 1)
{
int k = dfs(v,min(f,cap));
if(!k)continue;
edge[i].cap -= k;
edge[rev].cap += k;
return k;
}
}
return 0;
}
void solve()
{
int flow = 0;
while(bfs())
{
for(int i = s; i <= t; i++) cur[i] = h[i];
while(int k = dfs(s,inf)) flow += k;
}
cout << m-flow << endl;
}
int main()
{
std::ios::sync_with_stdio(false);
cin >> n;
init();
for(int i = 1; i <= n; i++)
{
cin >> s1;
id[s1] = ++cnum;
add(0,i,1);
}
cin >> m;
for(int i = 1; i <= m; i++)
{
cin >> did[i] >> s2;
if(id.count(s2) == 0) id[s2] = ++cnum;
dy[i] = id[s2];
}
build();
solve();
return 0;
}