Acwing 838. 堆排序

本文介绍了堆排序算法的基本原理和实现方法,包括插入、删除、修改等操作,并提供了两个不同的实现示例,一个是递归方式构建大根堆,另一个是通过调整保持堆性质。此外,还给出了固定输入的测试用例及其输出结果,帮助读者理解堆排序的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Acwing838. 堆排序

输入一个长度为 n 的整数数列,从小到大输出前 m 小的数。

输入格式

第一行包含整数 n 和 m。
第二行包含 n 个整数,表示整数数列。

输出格式

共一行,包含 m 个整数,表示整数数列中前 m 小的数。

数据范围

1≤m≤n≤105
1≤数列中元素≤109

示例:

输入样例:
5 3
4 5 1 3 2
输出样例:
1 2 3

模板题:堆排序
//如何手写一个堆?完全二叉树 5个操作
//1. 插入一个数         heap[ ++ size] = x; up(size);
//2. 求集合中的最小值   heap[1]
//3. 删除最小值         heap[1] = heap[size]; size -- ;down(1);
//4. 删除任意一个元素   heap[k] = heap[size]; size -- ;up(k); down(k);
//5. 修改任意一个元素   heap[k] = x; up(k); down(k);
#include <iostream>

using namespace std;

int const N = 100010;

//h[i] 表示第i个结点存储的值,i从1开始,2*i是左子节点,2*i + 1是右子节点
//size 既表示堆里存储的元素个数,又表示最后一个结点的下标
int h[N], siz; //堆有两个变量h[N],size; 怎么这里的size和文件里有冲突,只能改成siz了

void down(int u)
{
    int t = u;//t存储三个结点中存在的最小的结点的下标,初始化为当前结点u
    if (u * 2 <= siz && h[u * 2] < h[t]) t = u * 2; // 左子节点存在并且小于当前结点,更新t的下标
    if (u * 2 + 1 <= siz && h[u * 2 + 1] < h[t]) t = u * 2 + 1;//右子节点存在并且小于当前结点,更新t的下标
    if (t != u)//如果t==u意味着不用变动,u就是三个结点中拥有最小值的结点下标,否则交换数值
    {
        swap(h[t], h[u]);
        down(t); //交换数值后,t这个结点存储原本u的值,u存储存储t的值(三个数中的最小值)。u不用调整了,但t情况不明,可能需要调整。直到它比左右子节点都小
    }
}

int main()
{
    int n, m;
    cin >> n >> m;
    for (int i = 1; i <= n; i ++ ) scanf("%d", &h[i]); 
    siz = n; //初始化size,表示堆里有n 个元素

    for (int i = n / 2; i; i --) down(i); //把堆初始化成小根堆,从二叉树的倒数第二行开始,把数字大的下沉

    while (m -- )
    {
        printf("%d ", h[1]);
        h[1] = h[siz];
        siz --;
        down(1);
    }

    return 0;
}

固定输入

#include<iostream>
#include<vector>
using namespace std;

// 递归方式构建大根堆(len是arr的长度,index是第一个非叶子节点的下标)
void adjust(vector<int> &arr, int len, int index)
{
	int left = 2 * index + 1; // index的左子节点
	int right = 2 * index + 2;// index的右子节点

	int maxIdx = index;
	if (left<len && arr[left] > arr[maxIdx])     maxIdx = left;
	if (right<len && arr[right] > arr[maxIdx])     maxIdx = right;

	if (maxIdx != index)
	{
		swap(arr[maxIdx], arr[index]);
		adjust(arr, len, maxIdx);
	}

}

// 堆排序
void heapSort(vector<int> &arr)
{
	int size = arr.size();
	// 构建大根堆(从最后一个非叶子节点向上)
	for (int i = size / 2 - 1; i >= 0; i--)
	{
		adjust(arr, size, i);
	}

	// 调整大根堆
	for (int i = size - 1; i >= 1; i--)
	{
		swap(arr[0], arr[i]);           // 将当前最大的放置到数组末尾
		adjust(arr, i, 0);              // 将未完成排序的部分继续进行堆排序
	}
}

int main()
{
	vector<int> arr = { 8, 1, 14, 3, 21, 5, 7, 10 };
	heapSort(arr);
	for (int i = 0; i<arr.size(); i++)
	{
		cout << arr[i] << " ";
	}
	system("pause");
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值