假设你正在爬楼梯。需要 n 阶你才能到达楼顶。
每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢? 注意:给定 n
是一个正整数。
示例 1:
输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
- 1 阶 + 1 阶
- 2 阶
示例 2:
输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
- 1 阶 + 1 阶 + 1 阶
- 1 阶 + 2 阶
- 2 阶 + 1 阶
思路:动态规划 |
class Solution {
public:
int climbStairs(int n) {
int p=0,q=0,r=1;
for(int i=1;i<=n;i++){
p=q;
q=r;
r=p+q;
}
return r;
}
};
复杂度分析
- 时间复杂度:循环执行 n 次,每次花费常数的时间代价,故渐进时间复杂度为 O(n)。
- 空间复杂度:这里只用了常数个变量作为辅助空间,故渐进空间复杂度为 O(1)。