vins-mono初始化代码分析

本文详细介绍了VINS-Mono视觉惯性里程计的初始化流程,包括纯视觉SfM优化滑窗内的位姿估计、相机与IMU旋转外参数的估计、陀螺仪bias的初始化等内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大体流程

初始化主要分成2部分,第一部分是纯视觉SfM优化滑窗内的位姿,然后在融合IMU信息。
这部分代码在estimator::processImage()最后面。
在这里插入图片描述

主函数入口:

void Estimator::processImage(const map<int, vector<pair<int, Eigen::Matrix<double, 7, 1>>>> &image, const std_msgs::Header &header)

相机和imu旋转外参数的估计,分两步走:

  1. 获取最新两帧之间匹配的特征点对
vector<pair<Vector3d, Vector3d>> FeatureManager::getCorresponding(int frame_count_l, int frame_count_r)
  1. 计算相机-IMU之间的旋转
    利用旋转约束去估计
    qbkbk+1⊗qbc=qbc⊗qckck+1 q_{b_kb_{k+1}} \otimes q_{bc} = q_{bc} \otimes q_{c_kc_{k+1}} qbkbk+1qbc=qbcqckck+1
    在这里插入图片描述
bool CalibrationExRotation(vector<pair<Vector3d, Vector3d>> corres, Quaterniond delta_q_imu, Matrix3d &calib_ric_result)
{
 //! Step1: 滑窗內幀數加1
    frame_count++;
    //! Step2: 计算两帧之间的旋转矩阵
    // 利用帧可视化的3D点求解相邻两帧之间的旋转矩阵R_{ck, ck+1}
    Rc.push_back(solveRelativeR(corres)); //两帧图像之间的旋转通过solveRelativeR计算出本质矩阵E,再对矩阵进行分解得到图像帧之间的旋转R。
    //delta_q_imu为IMU预积分得到的旋转四元数,转换成矩阵形式存入Rimu当中。则Rimu中存放的是imu预积分得到的旋转矩阵
    Rimu.push_back(delta_q_imu.toRotationMatrix());
    //每帧IMU相对于起始帧IMU的R,ric初始化值为单位矩阵,则Rc_g中存入的第一个旋转向量为IMU的旋转矩阵
    Rc_g.push_back(ric.inverse() * delta_q_imu * ric);

    Eigen::MatrixXd A(frame_count * 4, 4);
    A.setZero();
    int sum_ok = 0;
    //遍历滑动窗口中的每一帧
    for (int i = 1; i <= frame_count; i++)
    {
        Quaterniond r1(Rc[i]);
        Quaterniond r2(Rc_g[i]);
        
        //!Step3:求取估计出的相机与IMU之间旋转的残差 公式(9)
        double angular_distance = 180 / M_PI * r1.angularDistance(r2);
        ROS_DEBUG(
            "%d %f", i, angular_distance);
        
        //! Step4:计算外点剔除的权重 Huber函数 公式(8) 
        double huber = angular_distance > 5.0 ? 5.0 / angular_distance : 1.0;
        ++sum_ok;
        Matrix4d L, R;
        
        //! Step5:求取系数矩阵        
        //! 得到相机对极关系得到的旋转q的左乘
        //四元数由q和w构成,q是一个三维向量,w为一个数值
        double w = Quaterniond(Rc[i]).w();
        Vector3d q = Quaterniond(Rc[i]).vec();
        //L为相机旋转四元数的左乘矩阵,Utility::skewSymmetric(q)计算的是q的反对称矩阵
        L.block<3, 3>(0, 0) = w * Matrix3d::Identity() + Utility::skewSymmetric(q);
        L.block<3, 1>(0, 3) = q;
        L.block<1, 3>(3, 0) = -q.transpose();
        L(3, 3) = w;
        
        //! 得到由IMU预积分得到的旋转q的右乘
        Quaterniond R_ij(Rimu[i]);
        w = R_ij.w();
        q = R_ij.vec();
        R.block<3, 3>(0, 0) = w * Matrix3d::Identity() - Utility::skewSymmetric(q);
        R.block<3, 1>(0, 3) = q;
        R.block<1, 3>(3, 0) = -q.transpose();
        R(3, 3) = w;

        A.block<4, 4>((i - 1) * 4, 0) = huber * (L - R);
    }
    
    //!Step6:通过SVD分解,求取相机与IMU的相对旋转    
    //!解为系数矩阵A的右奇异向量V中最小奇异值对应的特征向量
    JacobiSVD<MatrixXd> svd(A, ComputeFullU | ComputeFullV);
    Matrix<double, 4, 1> x = svd.matrixV().col(3);
    Quaterniond estimated_R(x);
    ric = estimated_R.toRotationMatrix().inverse();
    //cout << svd.singularValues().transpose() << endl;
    //cout << ric << endl;

    //!Step7:判断对于相机与IMU的相对旋转是否满足终止条件    
    //!1.用来求解相对旋转的IMU-Camera的测量对数是否大于滑窗大小。    
    //!2.A矩阵第二小的奇异值是否大于某个阈值,使A得零空间的秩为1
    Vector3d ric_cov;
    ric_cov = svd.singularValues().tail<3>();
    if (frame_count >= WINDOW_SIZE && ric_cov(1) > 0.25)
    {
        calib_ric_result = ric;
        return true;
    }
    else
        return false;
}

计算出qbcq_{bc}qbc后,对bgbgbg, [v0,v1,...,vn,g,s{v_0, v_1, ...,v_n, g, s}v0,v1,...,vn,g,s]进行初始化

bool Estimator::initialStructure()

在这里插入图片描述
IMU陀螺仪bias初始化:
在这里插入图片描述

void solveGyroscopeBias(map<double, ImageFrame> &all_image_frame, Vector3d* Bgs)
{
    Matrix3d A;
    Vector3d b;
    Vector3d delta_bg;
    A.setZero();
    b.setZero();
    map<double, ImageFrame>::iterator frame_i;
    map<double, ImageFrame>::iterator frame_j;
    for (frame_i = all_image_frame.begin(); next(frame_i) != all_image_frame.end(); frame_i++)
    {
        frame_j = next(frame_i);
        MatrixXd tmp_A(3, 3);
        tmp_A.setZero();
        VectorXd tmp_b(3);
        tmp_b.setZero();
        Eigen::Quaterniond q_ij(frame_i->second.R.transpose() * frame_j->second.R);
        tmp_A = frame_j->second.pre_integration->jacobian.template block<3, 3>(O_R, O_BG);
        tmp_b = 2 * (frame_j->second.pre_integration->delta_q.inverse() * q_ij).vec();
        A += tmp_A.transpose() * tmp_A;
        b += tmp_A.transpose() * tmp_b;

    }
    delta_bg = A.ldlt().solve(b);
    ROS_WARN_STREAM("gyroscope bias initial calibration " << delta_bg.transpose());

    for (int i = 0; i <= WINDOW_SIZE; i++)
        Bgs[i] += delta_bg;

    for (frame_i = all_image_frame.begin(); next(frame_i) != all_image_frame.end( ); frame_i++)
    {
        frame_j = next(frame_i);
        frame_j->second.pre_integration->repropagate(Vector3d::Zero(), Bgs[0]);
    }
}

[v0,v1,...,vn,gc0,s{v_0, v_1, ...,v_n, g^{c0}, s}v0,v1,...,vn,gc0,s]初始化:
αbk+1bk=Rwbk(Pbk+1w−Pbkw−vbkwΔt+12gwΔt2) \alpha_{b_{k+1}}^{b_k} = R_{w}^{b_k}(P_{b_{k+1}}^w - P_{b_{k}}^w - v_{b_k}^w \Delta t + \frac{1}{2}g^w \Delta t^2 ) \\ αbk+1bk=Rwbk(Pbk+1wPbkwvbkwΔt+21gwΔt2)
βbk+1bk=Rwbk(vbk+1w−vbkw+gwΔt) \beta_{b_{k+1}}^{b_k} = R_{w}^{b_k}(v_{b_{k+1}}^w - v_{b_k}^w + g^w \Delta t) βbk+1bk=Rwbk(vbk+1wvbkw+gwΔt)
通过平移约束spbkc0=spckc0−Rbc0pcbsp_{b_k}^{c_0} = sp_{c_k}^{c_0} - R_b^{c_0}p_c^bspbkc0=spckc0Rbc0pcb带入上式可得:
αbk+1bk=Rc0bk(s(Pbk+1c0−Pbkc0)−Rbkc0vbkbkΔt+12gc0Δt2) \alpha_{b_{k+1}}^{b_k} = R_{c_0}^{b_k}(s(P_{b_{k+1}}^{c_0} - P_{b_{k}}^{c_0}) - R_{b_k}^{c_0}v_{b_k}^{b_k} \Delta t + \frac{1}{2}g^{c_0} \Delta t^2 ) \\ αbk+1bk=Rc0bk(s(Pbk+1c0Pbkc0)Rbkc0vbkbkΔt+21gc0Δt2)

βbk+1bk=Rc0bk(Rbk+1c0vbk+1bk+1−Rbkc0vbkbk+gc0Δt) \beta_{b_{k+1}}^{b_k} = R_{c_0}^{b_k}(R_{b_{k+1}}^{c_0}v_{b_{k+1}}^{b_{k+1}} - R_{b_k}^{c_0}v_{b_k}^{b_k} + g^{c_0} \Delta t) βbk+1bk=Rc0bk(Rbk+1c0vbk+1bk+1Rbkc0vbkbk+gc0Δt)
在这里插入图片描述
在这里插入图片描述
同样将δβbk+1bk转为矩阵形式\delta \beta_{b_{k+1}}^{b_k}转为矩阵形式δβbk+1bk
在这里插入图片描述
即:H6×10XI10×1=b6×1H^{6 \times 10}X_{I}^{10 \times 1} = b^{6 \times 1}H6×10XI10×1=b6×1
这样,可以通过Cholosky分解下面方程求解XIX_{I}XI:
HTHXI10×1=HTb H^{T}HX_{I}^{10 \times 1} = H^{T}b HTHXI10×1=HTb

bool LinearAlignment(map<double, ImageFrame> &all_image_frame, Vector3d &g, VectorXd &x)
{
   int all_frame_count = all_image_frame.size();
   // 速度维度:all_frame_count * 3; 重力维度:3; scale维度:1;
   int n_state = all_frame_count * 3 + 3 + 1;

   // 构建 Ax = b 方程求解
   MatrixXd A{n_state, n_state};
   A.setZero();
   VectorXd b{n_state};
   b.setZero();

   map<double, ImageFrame>::iterator frame_i;
   map<double, ImageFrame>::iterator frame_j;
   int i = 0;
   for (frame_i = all_image_frame.begin(); next(frame_i) != all_image_frame.end(); frame_i++, i++)
   {
       frame_j = next(frame_i);

       MatrixXd tmp_A(6, 10);
       tmp_A.setZero();
       VectorXd tmp_b(6);
       tmp_b.setZero();

       double dt = frame_j->second.pre_integration->sum_dt;

       tmp_A.block<3, 3>(0, 0) = -dt * Matrix3d::Identity();
       tmp_A.block<3, 3>(0, 6) = frame_i->second.R.transpose() * dt * dt / 2 * Matrix3d::Identity();
       tmp_A.block<3, 1>(0, 9) = frame_i->second.R.transpose() * (frame_j->second.T - frame_i->second.T) / 100.0;     
       tmp_b.block<3, 1>(0, 0) = frame_j->second.pre_integration->delta_p + frame_i->second.R.transpose() * frame_j->second.R * TIC[0] - TIC[0];
       //cout << "delta_p   " << frame_j->second.pre_integration->delta_p.transpose() << endl;
       tmp_A.block<3, 3>(3, 0) = -Matrix3d::Identity();
       tmp_A.block<3, 3>(3, 3) = frame_i->second.R.transpose() * frame_j->second.R;
       tmp_A.block<3, 3>(3, 6) = frame_i->second.R.transpose() * dt * Matrix3d::Identity();
       tmp_b.block<3, 1>(3, 0) = frame_j->second.pre_integration->delta_v;
       //cout << "delta_v   " << frame_j->second.pre_integration->delta_v.transpose() << endl;

       Matrix<double, 6, 6> cov_inv = Matrix<double, 6, 6>::Zero();
       //cov.block<6, 6>(0, 0) = IMU_cov[i + 1];
       //MatrixXd cov_inv = cov.inverse();
       cov_inv.setIdentity();

       MatrixXd r_A = tmp_A.transpose() * cov_inv * tmp_A;
       VectorXd r_b = tmp_A.transpose() * cov_inv * tmp_b;

       A.block<6, 6>(i * 3, i * 3) += r_A.topLeftCorner<6, 6>();
       b.segment<6>(i * 3) += r_b.head<6>();

       A.bottomRightCorner<4, 4>() += r_A.bottomRightCorner<4, 4>();
       b.tail<4>() += r_b.tail<4>();

       A.block<6, 4>(i * 3, n_state - 4) += r_A.topRightCorner<6, 4>();
       A.block<4, 6>(n_state - 4, i * 3) += r_A.bottomLeftCorner<4, 6>();
   }
   A = A * 1000.0;
   b = b * 1000.0;
   x = A.ldlt().solve(b);
   double s = x(n_state - 1) / 100.0;
   ROS_DEBUG("estimated scale: %f", s);
   g = x.segment<3>(n_state - 4);
   ROS_DEBUG_STREAM(" result g     " << g.norm() << " " << g.transpose());
   if(fabs(g.norm() - G.norm()) > 1.0 || s < 0)
   {
       return false;
   }

   RefineGravity(all_image_frame, g, x);
   s = (x.tail<1>())(0) / 100.0;
   (x.tail<1>())(0) = s;
   ROS_DEBUG_STREAM(" refine     " << g.norm() << " " << g.transpose());
   if(s < 0.0 )
       return false;   
   else
       return true;
}

修正重力矢量

对应代码RefineGravity()函数
因为重力矢量的模固定,因此重力优化只有两个变量,可写成:
g^3×1=∣∣g∣∣g^ˉ3×1+w1b13×1+w2b23×1=∣∣g∣∣g^ˉ3×1+b3×2w2×1 \hat g^{3 \times 1} = || g|| \bar{\hat g}^{3\times 1} + w_1 b_1^{3\times1} + w_2 b_2^{3\times1} = ||g||\bar{\hat g}^{3\times 1} + b^{3\times2}w^{2\times1} g^3×1=gg^ˉ3×1+w1b13×1+w2b23×1=gg^ˉ3×1+b3×2w2×1
在这里插入图片描述

整理可得:
[−IΔtk012Rc0bkΔtk2bRc0bk(pˉck+1c0−pˉckc0)−IRc0bkRbk+1c0Rc0bkΔtkb0][vbkbkvbk+1bk+1ωs]=[αbk+1bk−pcb+Rc0bkRbk+1c0pcb−12Rc0bkΔtk2∣∣g∣∣g^ˉβbk+1bk−Rc0bk−Rc0bkΔtk∣∣g∣∣g^ˉ] \begin{bmatrix} -I\Delta t_k& 0 & \frac{1}{2}R_{c_0}^{b_k} \Delta t_k^2b& R_{c_0}^{b_k}(\bar p_{c_{k+1}}^{c_0} - \bar p_{c_{k}}^{c_0}) \\ -I& R_{c_0}^{b_k}R_{b_{k+1}}^{c_0}& R_{c_0}^{b_k} \Delta t_kb& 0 \end{bmatrix} \begin{bmatrix} v_{b_k}^{b_k}\\v_{b_{k+1}}^{b_{k+1}} \\\omega\\s\end{bmatrix} = \begin{bmatrix} \alpha_{b_{k+1}}^{b_{k}} - p_c^b + R_{c_0}^{b_k}R_{b_{k+1}}^{c_0}p_c^b - \frac{1}{2}R_{c_0}^{b_k} \Delta t_k^2||g|| \bar{\hat g} \\ \beta_{b_{k+1}}^{b_k} - R_{c_0}^{b_k} - R_{c_0}^{b_k} \Delta t_k ||g|| \bar{\hat g}\end{bmatrix} [IΔtkI0Rc0bkRbk+1c021Rc0bkΔtk2bRc0bkΔtkbRc0bk(pˉck+1c0pˉckc0)0]vbkbkvbk+1bk+1ωs=[αbk+1bkpcb+Rc0bkRbk+1c0pcb21Rc0bkΔtk2gg^ˉβbk+1bkRc0bkRc0bkΔtkgg^ˉ]
即:H6×9XI9×1=b6×1,w2×1=[w1,w2]TH^{6\times9}X_{I}^{9\times1} = b^{6\times1}, w^{2\times1} = {\begin{bmatrix} {w_1, w_2}\end{bmatrix}}^TH6×9XI9×1=b6×1,w2×1=[w1,w2]T
这样,可以用Cholosky分解下面方程求解XIX_IXI:
HTHXI=HTb H^THX_{I} = H^Tb HTHXI=HTb
这样我们就得到了在C0C_0C0系下的重力向量gc0g^{c_0}gc0,通过将gc0g^{c_0}gc0旋转到惯性坐标系中的Z轴方向,可以计算相机到惯性系的旋转矩阵qc0wq_{c_0}^wqc0w,这样就可以将所有变量调整到惯性世界系中。

参考资料

《VINS论文推导及代码解析》崔华坤

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值