剑指Offer-旋转数组的最小数字

题目描述:
把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。 输入一个非减排序的数组的一个旋转,输出旋转数组的最小元素。 例如数组{3,4,5,1,2}为{1,2,3,4,5}的一个旋转,该数组的最小值为1。 NOTE: 给出的所有元素都大于0,若数组大小为0,请返回0。

解题思路:
这道题最直观的解法并不难,从头到尾遍历数组一次,我们就能找出最小的元素。这种思路的时间复杂度显然是O(n)。但是这个思路没有利用输入的旋转数组的特性,肯定达不到面试官的要求。

我们注意到旋转之后的数组实际上可以划分为两个排序的子数组,而且前面的子数组的元素都大于或者等于后面子数组的元素。我们还注意到最小的元素刚好是这两个子数组的分界线。在排序的数组中我们可以用二分查找法实现O(logn)的查找。
  
Step1.和二分查找法一样,我们用两个指针分别指向数组的第一个元素和最后一个元素。

Step2.接着我们可以找到数组中间的元素:

如果该中间元素位于前面的递增子数组,那么它应该大于或者等于第一个指针指向的元素。此时数组中最小的元素应该位于该中间元素的后面。我们可以把第一个指针指向该中间元素,这样可以缩小寻找的范围。移动之后的第一个指针仍然位于前面的递增子数组之中。如果中间元素位于后面的递增子数组,那么它应该小于或者等于第二个指针指向的元素。此时该数组中最小的元素应该位于该中间元素的前面。

Step3.接下来我们再用更新之后的两个指针,重复做新一轮的查找。

按照上述的思路,第一个指针总是指向前面递增数组的元素,而第二个指针总是指向后面递增数组的元素。最终第一个指针将指向前面子数组的最后一个元素,而第二个指针会指向后面子数组的第一个元素。也就是它们最终会指向两个相邻的元素,而第二个指针指向的刚好是最小的元素。这就是循环结束的条件。

以前面的数组{3,4,5,1,2}为例,下图展示了在该数组中查找最小值的过程:
在这里插入图片描述代码实现:

     public int minNumberInRotateArray(int [] array) {
        if (array == null || array.length == 0){
            return 0;
        }
        int left = 0;
        int right = array.length - 1;
        // 把indexMid初始化为index1的原因:
        // 一旦发现数组中第一个数字小于最后一个数字,表明该数组是排序的
        // 就可以直接返回第一个数字了
        int mid = left;
        
        while(array[left] >= array[right]){
        	// 如果index1和index2指向相邻的两个数,
            // 则index1指向第一个递增子数组的最后一个数字,
            // index2指向第二个子数组的第一个数字,也就是数组中的最小数字
            if(right - left == 1){
                mid = right;
                break;
            }
            mid = (left + right) / 2;
            // 特殊情况:如果下标为index1、index2和indexMid指向的三个数字相等,则只能顺序查找
			if (array[left] == array[mid] && array[mid] == array[right]){
                return GetMinInOrder(array, left, right);
            }
			// 缩小查找范围
            if(array[mid] >= array[left]){
                left = mid;
            }else if(array[mid] <= array[right]){
                right = mid;
            }
            
        }
        return array[mid];
    }

	private int GetMinInOrder(int[] array, int left, int right) {
        int result = array[left];
        for (int i = left + 1; i <= right; ++i) {
            if (result > array[i]) {
                result = array[i];
            }
        }
        return result;
	}

作者:周旭龙
出处:http://edisonchou.cnblogs.com

以下是重新表述后的内容: 单周期 MIPS CPU 的微程序地址转移逻辑设计:在单周期 MIPS CPU 架构中,微程序地址转移逻辑是关键部分。它负责根据当前微指令的执行情况以及 CPU 内部的各种状态信号,准确地计算出下一条微指令的地址。这一逻辑需要综合考虑指令类型、操作完成情况、是否发生异常等多种因素,以确保微程序能够按照正确的顺序和逻辑进行执行,从而实现 MIPS 指令的准确译码与控制。 MIPS 微程序 CPU 的设计:设计一款基于微程序控制的 MIPS CPU,其核心在于构建微程序控制器。该控制器通过存储微指令序列来实现对 CPU 各部件的控制。微指令中包含对数据通路操作的控制信号以及微程序地址转移信息。在设计过程中,需要精心设计微指令格式,使其能够高效地表示各种操作控制信息,同时合理安排微指令存储器的组织结构,确保微指令的快速读取与准确执行,从而实现 MIPS 指令集的完整功能。 MIPS 硬布线控制器的状态机设计:在采用硬布线控制方式的 MIPS CPU 中,状态机是控制器的核心组成部分。状态机根据输入的指令操作码、状态信号等信息,在不同的状态之间进行转换。每个状态对应着 CPU 在执行一条指令过程中的一个特定阶段,如取指、译码、执行、访存等。状态机的设计需要精确地定义各个状态的转换条件以及在每个状态下输出的控制信号,以确保 CPU 能够按照正确的时序和逻辑完成指令的执行过程。 多周期 MIPS 硬布线控制器 CPU 设计(排序程序):设计一款多周期 MIPS 硬布线控制器 CPU,用于运行排序程序。在这种设计中,CPU 的每个指令执行周期被划分为多个子周期,每个子周期完成指令执行过程中的一个特定操作。硬布线控制器根据指令操作码和当前周期状态,生成相应的控制信号来协调 CPU 数据通路的操作。针对排序程序的特点,需要优化控制器的设计,合理安排指令执行的周期划分
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值