CodeForces 687A NP-Hard Problem 搜索

探讨了如何将一个无向图分割成两个互不相交的顶点集,使得每个边至少有一个端点位于各自集合中。通过深度优先搜索算法解决此问题,并给出具体实现代码。

http://codeforces.com/problemset/problem/687/A

A. NP-Hard Problem
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
Recently, Pari and Arya did some research about NP-Hard problems and they found the minimum vertex cover problem very interesting.

Suppose the graph G is given. Subset A of its vertices is called a vertex cover of this graph, if for each edge uv there is at least one endpoint of it in this set, i.e. or (or both).

Pari and Arya have won a great undirected graph as an award in a team contest. Now they have to split it in two parts, but both of them want their parts of the graph to be a vertex cover.

They have agreed to give you their graph and you need to find two disjoint subsets of its vertices A and B, such that both A and B are vertex cover or claim it’s impossible. Each vertex should be given to no more than one of the friends (or you can even keep it for yourself).

Input
The first line of the input contains two integers n and m (2 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000) — the number of vertices and the number of edges in the prize graph, respectively.

Each of the next m lines contains a pair of integers ui and vi (1  ≤  ui,  vi  ≤  n), denoting an undirected edge between ui and vi. It’s guaranteed the graph won’t contain any self-loops or multiple edges.

Output
If it’s impossible to split the graph between Pari and Arya as they expect, print “-1” (without quotes).

If there are two disjoint sets of vertices, such that both sets are vertex cover, print their descriptions. Each description must contain two lines. The first line contains a single integer k denoting the number of vertices in that vertex cover, and the second line contains k integers — the indices of vertices. Note that because of m ≥ 1, vertex cover cannot be empty.

Examples
input
4 2
1 2
2 3
output
1
2
2
1 3
input
3 3
1 2
2 3
1 3
output
-1
Note
In the first sample, you can give the vertex number 2 to Arya and vertices numbered 1 and 3 to Pari and keep vertex number 4 for yourself (or give it someone, if you wish).

In the second sample, there is no way to satisfy both Pari and Arya.

题意:
给出一片图问能不能产生两个集合,使每一边的两点分入不同的集合。
解法:
确定一点开始搜索,如果发现下一点已赋值且与该点为同一集合,就结束遍历。

#include<map>
#include<set>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<string>
#include<fstream>
#include<cstring>
#include<ctype.h>
#include<iostream>
#include<algorithm>
#define INF (1<<30)
#define PI acos(-1.0)
const int MOD = 1000000007;
typedef long long ll;
using namespace std;
vector<int>q[100005];
int n, m;
int vis[100005];
int dfs(int x)
{
    if (vis[x] == 0)
    {
        vis[x] = 1;
    }
    for (int i = 0; i<q[x].size(); i++)
    {
        if (vis[x] == vis[q[x][i]])
        {
            return 0;
        }
        if (vis[q[x][i]] == 0)
        {
            vis[q[x][i]] = (vis[x] + 2) % 2 + 1;
            if (!dfs(q[x][i]))
            {
                return 0;
            }
        }
    }
    return 1;
}
int check()
{
    for (int i = 1; i <= n; i++)
    {
        if (!vis[i])
        {
            if (dfs(i) == 0)return 0;
        }
    }
    return 1;
}
int main()
{
    while (scanf("%d%d", &n, &m) != EOF)
    {
        for (int i = 0, a, b; i<m; i++)
        {
            scanf("%d%d", &a, &b);
            q[a].push_back(b);
            q[b].push_back(a);
        }
        if (!check())
            cout << "-1" << endl;
        else
        {
            int A = 0, B = 0;
            for (int i = 1; i<=n; i++)
            {
                if (q[i].size())
                {
                    if (vis[i] == 1)
                    {
                        A++;
                    }
                    else if (vis[i] == 2)
                    {
                        B++;
                    }
                }
            }
            cout << A << endl;
            int cnt = 0;
            for (int i = 1; i <= n; i++)
            {
                if (!q[i].size() || vis[i] == 2)
                {
                    continue;
                }
                cnt++;
                if (cnt != A)
                    cout << i << " ";
                else
                    cout << i << endl;
            }
            cnt = 0;
            cout << B << endl;
            for (int i = 1; i <= n; i++)
            {
                if (!q[i].size() || vis[i] == 1)
                {
                    continue;
                }
                cnt++;
                if (cnt != B)
                    cout << i << " ";
                else
                    cout << i << endl;
            }
        }

    }
    return 0;
}

开始时大意没有在递归时加上判断,错了一次。

内容概要:本文详细介绍了“秒杀商城”微服务架构的设计与实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现与配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪与Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试与监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值