CodeForces 687A NP-Hard Problem 搜索

探讨了如何将一个无向图分割成两个互不相交的顶点集,使得每个边至少有一个端点位于各自集合中。通过深度优先搜索算法解决此问题,并给出具体实现代码。

http://codeforces.com/problemset/problem/687/A

A. NP-Hard Problem
time limit per test2 seconds
memory limit per test256 megabytes
inputstandard input
outputstandard output
Recently, Pari and Arya did some research about NP-Hard problems and they found the minimum vertex cover problem very interesting.

Suppose the graph G is given. Subset A of its vertices is called a vertex cover of this graph, if for each edge uv there is at least one endpoint of it in this set, i.e. or (or both).

Pari and Arya have won a great undirected graph as an award in a team contest. Now they have to split it in two parts, but both of them want their parts of the graph to be a vertex cover.

They have agreed to give you their graph and you need to find two disjoint subsets of its vertices A and B, such that both A and B are vertex cover or claim it’s impossible. Each vertex should be given to no more than one of the friends (or you can even keep it for yourself).

Input
The first line of the input contains two integers n and m (2 ≤ n ≤ 100 000, 1 ≤ m ≤ 100 000) — the number of vertices and the number of edges in the prize graph, respectively.

Each of the next m lines contains a pair of integers ui and vi (1  ≤  ui,  vi  ≤  n), denoting an undirected edge between ui and vi. It’s guaranteed the graph won’t contain any self-loops or multiple edges.

Output
If it’s impossible to split the graph between Pari and Arya as they expect, print “-1” (without quotes).

If there are two disjoint sets of vertices, such that both sets are vertex cover, print their descriptions. Each description must contain two lines. The first line contains a single integer k denoting the number of vertices in that vertex cover, and the second line contains k integers — the indices of vertices. Note that because of m ≥ 1, vertex cover cannot be empty.

Examples
input
4 2
1 2
2 3
output
1
2
2
1 3
input
3 3
1 2
2 3
1 3
output
-1
Note
In the first sample, you can give the vertex number 2 to Arya and vertices numbered 1 and 3 to Pari and keep vertex number 4 for yourself (or give it someone, if you wish).

In the second sample, there is no way to satisfy both Pari and Arya.

题意:
给出一片图问能不能产生两个集合,使每一边的两点分入不同的集合。
解法:
确定一点开始搜索,如果发现下一点已赋值且与该点为同一集合,就结束遍历。

#include<map>
#include<set>
#include<queue>
#include<stack>
#include<cmath>
#include<cstdio>
#include<vector>
#include<string>
#include<fstream>
#include<cstring>
#include<ctype.h>
#include<iostream>
#include<algorithm>
#define INF (1<<30)
#define PI acos(-1.0)
const int MOD = 1000000007;
typedef long long ll;
using namespace std;
vector<int>q[100005];
int n, m;
int vis[100005];
int dfs(int x)
{
    if (vis[x] == 0)
    {
        vis[x] = 1;
    }
    for (int i = 0; i<q[x].size(); i++)
    {
        if (vis[x] == vis[q[x][i]])
        {
            return 0;
        }
        if (vis[q[x][i]] == 0)
        {
            vis[q[x][i]] = (vis[x] + 2) % 2 + 1;
            if (!dfs(q[x][i]))
            {
                return 0;
            }
        }
    }
    return 1;
}
int check()
{
    for (int i = 1; i <= n; i++)
    {
        if (!vis[i])
        {
            if (dfs(i) == 0)return 0;
        }
    }
    return 1;
}
int main()
{
    while (scanf("%d%d", &n, &m) != EOF)
    {
        for (int i = 0, a, b; i<m; i++)
        {
            scanf("%d%d", &a, &b);
            q[a].push_back(b);
            q[b].push_back(a);
        }
        if (!check())
            cout << "-1" << endl;
        else
        {
            int A = 0, B = 0;
            for (int i = 1; i<=n; i++)
            {
                if (q[i].size())
                {
                    if (vis[i] == 1)
                    {
                        A++;
                    }
                    else if (vis[i] == 2)
                    {
                        B++;
                    }
                }
            }
            cout << A << endl;
            int cnt = 0;
            for (int i = 1; i <= n; i++)
            {
                if (!q[i].size() || vis[i] == 2)
                {
                    continue;
                }
                cnt++;
                if (cnt != A)
                    cout << i << " ";
                else
                    cout << i << endl;
            }
            cnt = 0;
            cout << B << endl;
            for (int i = 1; i <= n; i++)
            {
                if (!q[i].size() || vis[i] == 1)
                {
                    continue;
                }
                cnt++;
                if (cnt != B)
                    cout << i << " ";
                else
                    cout << i << endl;
            }
        }

    }
    return 0;
}

开始时大意没有在递归时加上判断,错了一次。

【直流微电网】径向直流微电网的状态空间建模与线性化:一种耦合DC-DC变换器状态空间平均模型的方法 (Matlab代码实现)内容概要:本文介绍了径向直流微电网的状态空间建模与线性化方法,重点提出了一种基于耦合DC-DC变换器状态空间平均模型的建模策略。该方法通过对系统中多个相互耦合的DC-DC变换器进行统一建模,构建出整个微电网的集中状态空间模型,并在此基础上实施线性化处理,便于后续的小信号分析与稳定性研究。文中详细阐述了建模过程中的关键步骤,包括电路拓扑分析、状态变量选取、平均化处理以及雅可比矩阵的推导,最终通过Matlab代码实现模型仿真验证,展示了该方法在动态响应分析和控制器设计中的有效性。; 适合人群:具备电力电子、自动控制理论基础,熟悉Matlab/Simulink仿真工具,从事微电网、新能源系统建模与控制研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握直流微电网中多变换器系统的统一建模方法;②理解状态空间平均法在非线性电力电子系统中的应用;③实现系统线性化并用于稳定性分析与控制器设计;④通过Matlab代码复现和扩展模型,服务于科研仿真与教学实践。; 阅读建议:建议读者结合Matlab代码逐步理解建模流程,重点关注状态变量的选择与平均化处理的数学推导,同时可尝试修改系统参数或拓扑结构以加深对模型通用性和适应性的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值