算法设计 第二次上机 Subway

本文介绍了一种利用Dijkstra算法解决城市通勤问题的方法,通过计算不同交通方式下的最短路径,帮助用户找到从家到学校的最快路线。考虑了步行与地铁出行方式,并通过实际坐标数据来模拟这一过程。

总时间限制: 
1000ms 
内存限制: 
65536kB
描述
You have just moved from a quiet Waterloo neighbourhood to a big, noisy city. Instead of getting to ride your bike to school every day, you now get to walk and take the subway. Because you don't want to be late for class, you want to know how long it will take you to get to school. 
You walk at a speed of 10 km/h. The subway travels at 40 km/h. Assume that you are lucky, and whenever you arrive at a subway station, a train is there that you can board immediately. You may get on and off the subway any number of times, and you may switch between different subway lines if you wish. All subway lines go in both directions.
输入
Input consists of the x,y coordinates of your home and your school, followed by specifications of several subway lines. Each subway line consists of the non-negative integer x,y coordinates of each stop on the line, in order. You may assume the subway runs in a straight line between adjacent stops, and the coordinates represent an integral number of metres. Each line has at least two stops. The end of each subway line is followed by the dummy coordinate pair -1,-1. In total there are at most 200 subway stops in the city.
输出
Output is the number of minutes it will take you to get to school, rounded to the nearest minute, taking the fastest route.
样例输入
0 0 10000 1000
0 200 5000 200 7000 200 -1 -1 
2000 600 5000 600 10000 600 -1 -1
样例输出
21
来源
Waterloo local 2001.09.22

注意,memset不能用于float数组的赋值!!!!!!!!

将每个地铁站以及家、学校的位置作为一个点,计算各点之间的距离。


#include <iostream>
#include <stdio.h>
#include <math.h>
#include <climits>
#include <float.h>
#include <string.h>
#include <stdlib.h>

using namespace std;

float graph[205][205];
int cor[205][2];
int station;
bool isvisit[205];
float dis[205];

float getdis(int x1, int y1, int x2, int y2)
{
    return sqrt((x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2));
}

void dijkstra()
{
    for(int i = 0; i < station; i++)
        dis[i] = -1.0;
    memset(isvisit, false, sizeof(isvisit));
    int now = 0;
    isvisit[0] = true;
    dis[0] = 0;
    for(int i = 1; i < station; i++)
    {
        float mindis = -1.0;
        int next = -1;
        for(int j = 1; j < station; j++)
        {
            if(j == now)
                continue;
            if(!isvisit[j])
            {
                if( dis[j] == -1.0 || dis[j] > dis[now] + graph[now][j])
                {
                    dis[j] = dis[now] + graph[now][j];
                }
                if(mindis == -1.0 || dis[j] < mindis)
                {
                    mindis = dis[j];
                    next = j;
                }
            }
        }
        now = next;
        isvisit[now] = true;
    }
}

int main()
{
    //freopen("test.txt", "r", stdin);
    int x0, y0, x1, y1;
    station = 2;

    cin >> x0 >> y0 >> x1 >> y1;
    //cout << x0 << "\t" << y0 << "\t" << x1 << "\t" << y1 << endl;

    cor[0][0] = x0;
    cor[0][1] = y0;
    cor[1][0] = x1;
    cor[1][1] = y1;

    graph[0][1] = graph[1][0] = getdis(x0, y0, x1, y1) / 10000 * 60;

    while(cin >> x0 >> y0)
    {
        //cout << x0 << "\t" << y0 << "\t";
        cor[station][0] = x0;
        cor[station][1] = y0;
        station ++;
        for(int i = 0; i < station -1; i ++)
        {
            graph[i][station - 1] = graph[station - 1][i] = getdis(x0, y0, cor[i][0], cor[i][1]) / 10000 * 60;
            //cout << "graph[" << i << "][" << station - 1 << "]:" << graph[i][station - 1] << endl;
        }
        cin >> x1 >> y1;
        //cout << x1 << "\t" << y1 << "\t" << endl;
        while(x1 != -1 && y1 != -1)
        {
            cor[station][0] = x1;
            cor[station][1] = y1;
            station ++;
            //cout << station << endl;
            for(int i = 0; i < station -2; i ++)
            {
                graph[i][station - 1] = graph[station - 1][i] = getdis(x1, y1, cor[i][0], cor[i][1]) / 10000 * 60;
                //cout << "graph[" << i << "][" << station - 1 << "]:" << graph[i][station - 1] << endl;
            }
            graph[station - 2][station - 1] = graph[station - 1][station - 2] = getdis(x1, y1, cor[station - 2][0], cor[station - 2][1]) / 40000 * 60;
            //cout << "graph[" << station - 2 << "][" << station - 1 << "]:" << graph[station - 2][station - 1] << endl;
            cin >> x1 >> y1;
            //cout << x1 << "\t" << y1 << "\t" << endl;
        }
    }
    dijkstra();
    cout << int(dis[1] + 0.5) << endl;
    return 0;
}






六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,详细介绍了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程的理论与Matlab代码实现过程。文档还涵盖了PINN物理信息神经网络在微分方程求解、主动噪声控制、天线分析、电动汽车调度、储能优化等多个工程与科研领域的应用案例,并提供了丰富的Matlab/Simulink仿真资源和技术支持方向,体现了其在多学科交叉仿真与优化中的综合性价值。; 适合人群:具备一定Matlab编程基础,从事机器人控制、自动化、智能制造、电力系统或相关工程领域研究的科研人员、研究生及工程师。; 使用场景及目标:①掌握六自由度机械臂的运动学与动力学建模方法;②学习人工神经网络在复杂非线性系统控制中的应用;③借助Matlab实现动力学方程推导与仿真验证;④拓展至路径规划、优化调度、信号处理等相关课题的研究与复现。; 阅读建议:建议按目录顺序系统学习,重点关注机械臂建模与神经网络控制部分的代码实现,结合提供的网盘资源进行实践操作,并参考文中列举的优化算法与仿真方法拓展自身研究思路。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值