1.Weisfeiler-Lehman Algorithm

Weisfeiler-Lehman算法解析
本文详细介绍了Weisfeiler-Lehman算法,一种用于判断图同构问题的有效方法。通过迭代过程更新节点标签,最终通过比较标签分布确定两图是否同构。


欢迎访问个人网络日志🌹🌹知行空间🌹🌹


Weisfeiler-Lehman Algorithm是美国的数学家Boris Weisfeiler在1968年发表的论文the reduction of a graph to a canonical form and an algebra arising during this reduction中提出的判断图同构(Graph Isomorphism)与否的算法。

1.图同构介绍

参考自维基百科

图同构描述的是图论中,两个图之间的完全等价关系。在图论的观点下,两个同构的图被当作同一个图来研究。

只有节点数目相同(即同阶)的两个图才有可能同构。

两个简单图 G G G H H H称为是同构的,当且仅当存在一个将 G G G的节点 1 , . . . , n 1,...,n 1,...,n映射到 H H H的节点 1 , . . . , n 1,...,n 1,...,n的一一对应 σ \sigma σ ,使得 G G G中任意两个节点 i i i j j j相连接,当且仅当 H H H中对应的两个节点 σ i \sigma_{i} σ

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值