Piggy-Bank(完全背包)

完全背包问题详解
本文深入解析了完全背包问题的算法实现,通过一个具体的C++代码示例,详细展示了如何使用动态规划解决完全背包问题,包括初始化状态转移方程、边界条件设定及优化技巧。

完全背包问题

#include <iostream> 
#include <algorithm>
using namespace std;

int main(int argc, char** argv) {
	int dp[10005];

	int n, m, w[505], v[505], ew, fw;
	cin >> n;
	for(int i = 0; i < n; i++) {
		cin >> ew >> fw;
		int bag = fw - ew;//要装的空间大小
		int num;//硬币种类
		cin >> num;
		for(int i = 1; i <= num; i++) {
			cin >> v[i] >> w[i];
		}
		for(int i = 1; i <= bag; i++) dp[i] = 0x7fffffff;
		dp[0] = 0;
		for(int i = 1; i <= num; i++) {
			for(int j = w[i]; j <= bag; j++) {
				if(dp[j - w[i]] != 0x7fffffff)//要注意要不为无穷才可以 
				dp[j] = min(dp[j], dp[j - w[i]] + v[i]);
			}
			for(int j = 1; j <= bag; j++) cout << dp[j] << " ";
			cout << endl;
		}

		if(dp[bag] != 0x7fffffff) {
			cout << "The minimum amount of money in the piggy-bank is " << dp[bag] << "." << endl;
		} else {
			cout << "This is impossible." << endl;
		}

	}
	return 0;
}

 

内容概要:本文详细介绍了“秒杀商城”微服务架构的设计与实战全过程,涵盖系统从需求分析、服务拆分、技术选型到核心功能开发、分布式事务处理、容器化部署及监控链路追踪的完整流程。重点解决了高并发场景下的超卖问题,采用Redis预减库存、消息队列削峰、数据库乐观锁等手段保障数据一致性,并通过Nacos实现服务注册发现与配置管理,利用Seata处理跨服务分布式事务,结合RabbitMQ实现异步下单,提升系统吞吐能力。同时,项目支持Docker Compose快速部署和Kubernetes生产级编排,集成Sleuth+Zipkin链路追踪与Prometheus+Grafana监控体系,构建可观测性强的微服务系统。; 适合人群:具备Java基础和Spring Boot开发经验,熟悉微服务基本概念的中高级研发人员,尤其是希望深入理解高并发系统设计、分布式事务、服务治理等核心技术的开发者;适合工作2-5年、有志于转型微服务或提升架构能力的工程师; 使用场景及目标:①学习如何基于Spring Cloud Alibaba构建完整的微服务项目;②掌握秒杀场景下高并发、超卖控制、异步化、削峰填谷等关键技术方案;③实践分布式事务(Seata)、服务熔断降级、链路追踪、统一配置中心等企业级中间件的应用;④完成从本地开发到容器化部署的全流程落地; 阅读建议:建议按照文档提供的七个阶段循序渐进地动手实践,重点关注秒杀流程设计、服务间通信机制、分布式事务实现和系统性能优化部分,结合代码调试与监控工具深入理解各组件协作原理,真正掌握高并发微服务系统的构建能力。
### 问题描述 SWUST OJ平台上的Piggy-Bank问题通常涉及动态规划中的完全背包问题。题目大意是:给定一个存钱罐的空重量 $ e $ 和满重量 $ f $,以及若干种硬币的价值和重量,每种硬币的数量不限。要求用这些硬币恰好填满存钱罐(总重量为 $ f - e $),使得总价值最小。如果无法恰好填满,则输出“This is impossible.”。 ### 解法分析 此问题是一个典型的**完全背包问题**,其中每个物品可以被无限次使用。为了求解最小价值,可以采用动态规划的方法。 #### 动态规划思路 1. **状态定义**: - 定义数组 `ans[j]` 表示当总重量为 $ j $ 时,所需的最小价值。 - 初始化时,`ans[0] = 0`,其余位置初始化为一个较大的值(如 `inf`),表示无法达到该重量。 2. **状态转移**: - 对于每个硬币,重量为 `weight[i]`,价值为 `value[i]`。 - 遍历重量范围 $ j $ 从 `weight[i]` 到最大重量 $ f-e $,更新 `ans[j]` 的值: $$ ans[j] = \min(ans[j], ans[j - weight[i]] + value[i]) $$ 3. **最终结果**: - 如果 `ans[f-e]` 仍为 `inf`,说明无法恰好填满存钱罐;否则输出最小价值。 #### 示例代码 以下是该问题的完整解法代码实现: ```cpp #include <stdio.h> #include <string.h> #include <algorithm> using namespace std; #define inf 0x7fffff int value[508], weight[508], ans[10050]; int main() { int n; scanf("%d", &n); while (n--) { int e, f, t; scanf("%d%d%d", &e, &f, &t); for (int i = 0; i <= f; i++) { ans[i] = inf; } for (int i = 0; i < t; i++) { scanf("%d%d", &value[i], &weight[i]); } ans[0] = 0; for (int i = 0; i < t; i++) { for (int j = weight[i]; j <= f - e; j++) { ans[j] = min(ans[j], ans[j - weight[i]] + value[i]); } } if (ans[f - e] == inf) { printf("This is impossible.\n"); } else { printf("The minimum amount of money in the piggy-bank is %d.\n", ans[f - e]); } } } ``` #### 代码解析 - **初始化**:`ans` 数组初始化为一个极大值 `inf`,表示无法达到的状态。 - **输入处理**:循环读取多组测试数据,每组数据包括空重量 $ e $、满重量 $ f $ 和硬币种类数 $ t $。 - **动态规划处理**:通过两层循环遍历硬币和重量,更新动态规划数组。 - **结果判断**:根据 `ans[f-e]` 是否为 `inf` 判断是否可以填满存钱罐。 ### 算法复杂度 - **时间复杂度**:$ O(T \cdot W) $,其中 $ T $ 是硬币种类数,$ W $ 是目标重量 $ f-e $。 - **空间复杂度**:$ O(W) $,仅使用一维数组存储状态。 ### 相关问题 1. 如何将完全背包问题转换为动态规划解法? 2. 在动态规划中如何处理最小值问题? 3. 如何优化完全背包问题的空间复杂度? 4. 什么是完全背包问题与0-1背包问题的区别? 5. 如何处理无法达到目标状态的情况?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值