Ignatius’s puzzle
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 9936 Accepted Submission(s): 6961
Problem Description
Ignatius is poor at math,he falls across a puzzle problem,so he has no choice but to appeal to Eddy. this problem describes that:f(x)=5*x^13+13*x^5+k*a*x,input a nonegative integer k(k<10000),to find the minimal nonegative integer a,make the arbitrary integer x ,65|f(x)if
no exists that a,then print “no”.
Input
The input contains several test cases. Each test case consists of a nonegative integer k, More details in the Sample Input.
Output
The output contains a string “no”,if you can’t find a,or you should output a line contains the a.More details in the Sample Output.
Sample Input
11
100
9999
Sample Output
22
no
43
Author
eddy
Recommend
We have carefully selected several similar problems for you: 1071 1052 1049 1082 1064
f(x)=5*x^13+13*x^5+k*a*x,要使f(x)被65整除f(x)肯定为整数,—-》x为整数!=0,
f(x+1)=5*(x+1)^13+13*(x+1)^5+k*a*(x+1),将f(x+1)按二项式定理展开有:
f(x+1)=5*(c(13,0)*x^13+c(13,1)*x^12+c(13,2)*x^11+….+c(13,12)*x+c(13,13)*x^0)+
13*(c(5,0)x^5+c(5,1)*x^4+…..+c(5,4)*x^1+c(5,5)*x^0)+k*a(x+1)
由于c(13,1)…c(13,12)中间一定可以提取一个13,则有这些项*5之后一定可以被65整除
同理c(5,1)…c(5,4)一定可以提取一个5,则有这些项*13之后一定可以被65整除
所以:f(x+1)=5*(c(13,0)x^13+c(13,13)*x^0)+13(c(5,0)x^5+c(5,5)*x^0)+k*a(x+1)
只需要k*a*(x+1)能被65整除,即k*a*x能被65整除,要想取a最小值,x要取最小1或者-1。所以只需要18+k*a或者-18-k*a能被65整除。要使(18+k*a)%65==0,k*a肯定为65的倍数-18=47,而k最小为1.所以a最大为65 就可以了。
原文
#include<stdio.h>
#include<math.h>
using namespace std;
int main() {
int k;
while (scanf("%d",&k) != EOF)
{
bool flag = true;
for (int i = 1; i <= 65; i++)
{
if (i*k % 65 == 47)
{
printf("%d\n", i);
flag = false;
break;
}
}
if (flag)printf("no\n");
}
return 0;
}

本文介绍了一种解决特定数学谜题的算法,该谜题要求找到最小的非负整数a,使得对于任意整数x,表达式f(x)=5*x^13+13*x^5+k*a*x被65整除。通过分析二项式定理的应用,文章给出了求解过程及完整的C++代码实现。
11万+

被折叠的 条评论
为什么被折叠?



