基于全排列的N皇后暴力

N皇后是算法的经典问题,以下提供一种基于全排列的N皇后的解法。
首先,N皇后的起始要求是指的是 不能有任意两个皇后是同行、同列、同一个斜排。所以可以很自然的联想到全排列来解决这个问题。
例如,1 2 3的全排列有1 2 3,1 3 2,2 1 3,2 3 1,3 2 1,3 1 2六种。它们可以看做是六种皇后摆放的位置描述
举个栗子,1 3 2 可以看做第一行第一列放置一个皇后,第二行第三列放置一个皇后,第三行第二列放置一个皇后。3 1 2也可以看做是第一行第三列放置一个皇后,第二行第一列放置一个皇后,第三行第二列放置一个皇后(这只是举个例子,实际上三皇后是不存在可以放置的情况的)。以此类推,我们只需要知道我们想要找的皇后的个数,然后再输出这个个数的全排列。全排列所代表的位置信息肯定不是同行同列的,那么只需要继续判定任意两个皇后是否是同一斜排即可。

#include <iostream>
#include <cmath>
using namespace std;
const int maxn = 1010;
int n,counts = 0,p[maxn];
bool hashtable[maxn] = {false};
void generateP(int index){
    if(index == n + 1){
        bool flag = true;
        for(int i = 1;i <= n;i ++)
        for(int j = i+1;j <= n;j ++){
            if(abs(i - j) == abs(p[i] - p[j])){flag = false;break;}
        }
        if(flag) counts ++;
        return ;
    }
    for(int x = 1;x <= n;x ++){
        if(hashtable[x] == false){
            p[index] = x;
            hashtable[x] = true;
            generateP(index + 1);
            hashtable[x] = false;
        }
    }
}
int main()
{
    cin >> n;
    generateP(1);
    cout << counts << endl;
    return 0;
}
/*
sample input: 8
sample output: 92
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值