POJ1423————Big Number

本文探讨了斯特林公式在计算阶乘位数中的应用,并通过实例展示了如何利用该公式解决实际问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Big Number
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 26892 Accepted: 8592

阶乘的位数(公式题);

斯特林公式:

log(n!) = log10(sqrt(2*pi*n)) + n*log10(n/e);


Description

In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of digits in the factorial of the number.

Input

Input consists of several lines of integer numbers. The first line contains an integer n, which is the number of cases to be tested, followed by n lines, one integer 1 <= m <= 10^7 on each line.

Output

The output contains the number of digits in the factorial of the integers appearing in the input.

Sample Input

2
10
20

Sample Output

7
19

Source

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值