Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree is symmetric:
1 / \ 2 2 / \ / \ 3 4 4 3
But the following is not:
1 / \ 2 2 \ \ 3 3
Note:
Bonus points if you could solve it both recursively and iteratively.
confused what "{1,#,2,3}"
means? > read more on how binary tree is serialized on OJ.
OJ's Binary Tree Serialization:
The serialization of a binary tree follows a level order traversal, where '#' signifies a path terminator where no node exists below.
Here's an example:
1 / \ 2 3 / 4 \ 5The above binary tree is serialized as
"{1,2,3,#,#,4,#,#,5}"
.
public boolean isSymmetric(TreeNode root) {
// Start typing your Java solution below
// DO NOT write main() function
if (null == root) {
return true;
}
return dfs(root.left, root.right);
}
boolean dfs(TreeNode left, TreeNode right) {
if ((null != left && null == right) || (null == left)
&& (null != right)) {
return false;
} else if (left == null && right == null) {
return true;
} else if (left.val != right.val) {
return false;
}
boolean leftResult = dfs(left.left, right.right);
boolean rightResult = dfs(left.right, right.left);
return (leftResult && rightResult) ? true : false;
}