kafka-demo 4 分区与自定义分区器

4 分区与自定义分区器

代码地址:https://github.com/luslin1711/kafka_demo/tree/master/kafka_demo_04

ProducerRecord 对象 有多个构造方法, 常用的有

public ProducerRecord(String topic, Integer partition, K key, V value) {
        this(topic, partition, null, key, value, null);
    }
public ProducerRecord(String topic, K key, V value) {
        this(topic, null, null, key, value, null);
    }
public ProducerRecord(String topic, V value) {
    this(topic, null, null, null, value, null);
}

如果partition是想发送的分区, 如果不传, 则看key是否传入。

    private int partition(ProducerRecord<K, V> record, byte[] serializedKey, byte[] serializedValue, Cluster cluster) {
        Integer partition = record.partition();
        return partition != null ?
                partition :
                partitioner.partition(
                        record.topic(), record.key(), serializedKey, record.value(), serializedValue, cluster);
    }

DefaultPartitioner.partition

  public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster,
                         int numPartitions) {
        if (keyBytes == null) {
            return stickyPartitionCache.partition(topic, cluster);
        }
        // hash the keyBytes to choose a partition
        return Utils.toPositive(Utils.murmur2(keyBytes)) % numPartitions;
    }

所以, 拥有相同键的消息会被写入同一个分区。如果一个进程只从一个主题的分区读取数据,那么具有相同键对的所有记录都会被该进程读取。

二、 自定义分区器

比如, 将key为null 的record 发送到最后一个分区, 其他的键散列到其他分区

需要实现Partitioner接口

public interface Partitioner extends Configurable, Closeable {

    /**
     * Compute the partition for the given record.
     *
     * @param topic The topic name
     * @param key The key to partition on (or null if no key)
     * @param keyBytes The serialized key to partition on( or null if no key)
     * @param value The value to partition on or null
     * @param valueBytes The serialized value to partition on or null
     * @param cluster The current cluster metadata
     */
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster);

    /**
     * This is called when partitioner is closed.
     */
    public void close();


    /**
     * Notifies the partitioner a new batch is about to be created. When using the sticky partitioner,
     * this method can change the chosen sticky partition for the new batch. 
     * @param topic The topic name
     * @param cluster The current cluster metadata
     * @param prevPartition The partition previously selected for the record that triggered a new batch
     */
    default public void onNewBatch(String topic, Cluster cluster, int prevPartition) {
    }
}

例如 CustomizedPartitioner

import org.apache.kafka.clients.producer.Partitioner;
import org.apache.kafka.common.Cluster;
import org.apache.kafka.common.utils.Utils;
import java.util.Map;

public class CustomizedPartitioner implements Partitioner {
    @Override
    public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
        Integer countForTopic = cluster.partitionCountForTopic(topic);
        if (countForTopic == null || countForTopic == 1) {
            return 0;
        } else {
            if (key == null) {
                return countForTopic-1;
            } else {
                return Utils.toPositive(Utils.murmur2(keyBytes)) % (countForTopic - 1);
            }
        }
    }
    @Override
    public void close() {}
    @Override
    public void configure(Map<String, ?> configs) {}
}

然后在Producer中定义这个类

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;
import org.apache.kafka.common.serialization.StringSerializer;
import java.util.Properties;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;

public class Producer {
    public static void main(String[] args) throws ExecutionException, InterruptedException {
        Properties props = new Properties();
        props.put("bootstrap.servers", "localhost:9092");
        props.put("acks", "all");
        props.put("enable.idempotence", "true");
        props.put("retries", 5);
        props.put("max.in.flight.requests.per.connection", 1);
        props.put("partitioner.class", "com.luslin.demo.kakfa.producer.CustomizedPartitioner"); // 定义分区器
        KafkaProducer<String, String> producer = new KafkaProducer<>(props, new StringSerializer(), new StringSerializer());
        for (int i = 0; i < 10; i++) {
            Future<RecordMetadata> recordMetadataFuture = producer.send(new ProducerRecord<String, String>("topic04", Integer.toString(i), Integer.toString(i)));
            RecordMetadata recordMetadata = recordMetadataFuture.get();
            System.out.println("offset: " + recordMetadata.offset() + ", partition: " + recordMetadata.partition());
        }
        for (int i = 0; i < 10; i++) {
            Future<RecordMetadata> recordMetadataFuture = producer.send(new ProducerRecord<String, String>("topic04", null, Integer.toString(i)));
            RecordMetadata recordMetadata = recordMetadataFuture.get();
            System.out.println("key null -> offset: " + recordMetadata.offset() + ", partition: " + recordMetadata.partition());
        }
        producer.close();

    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值