文献阅读笔记:脉冲神经网络最新文献合集-XVI

序号 英文标题 作者及机构 中文翻译 出处 链接
1 Integrating predictive coding with reservoir computing in spiking neural network model of cultured neurons Yoshitaka Ishikawa;Takumi Shinkawa;Takuma Sumi;Hideyuki Kato;Hideaki Yamamoto;Yuichi Katori(Future University Hakodate ; Oita University ; Tohoku University ; Oita University ; Tohoku University ; Future University Hakodate International Research Center for Neurointelligence (IRCN)) 培养神经元脉冲神经网络模型中预测编码与储备池计算的融合 Nonlinear Theory and Its Applications, IEICE 2024 Vol.15 No.2 P432-442 链接
2 Deep spiking neural network training method across spiking propagation. (1广东工业大学计算机学院,广州510006.) 跨脉冲传播的深度脉冲神经网络训练方法 Application Research of Computers / Jisuanji Yingyong Yanjiu 2024 Vol.41 No.7 P2134-2140 链接
3 Online Learning Behavior Analysis and Prediction Based on Spiking Neural Networks Yanjing Li,Xiaowei Wang,Fukun Chen,Bingxu Zhao,Qiang Fu(the Institute of Education Science Research) 基于脉冲神经网络的在线学习行为分析与预测 Journal of Social Computing 2024 第2期 P180-193 链接
4 Exploiting memristive autapse and temporal distillation for training spiking neural networks Tao Chen1;Shukai Duan1,2,3;Lidan Wang1,2,3,4,5(1College of Artificial Intelligence, Southwest University, Chongqing, 400715, China;2Chongqing Key Laboratory of Brain-inspired Computing and Intelligent Chips, Chongqing, 400715, China;3National & Local Joint Engineering Laboratory of Intelligent Transmission and Control Technology, Chongqing, 400715, China;4Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Southwest University, Chongqing, 400715, China;5State Key Laboratory of Intelligent Vehicle Safety Technology, Chongqing, 400023, China) 利用忆阻自突触和时间蒸馏训练脉冲神经网络 Knowledge-Based Systems 2024 Vol.305 P112627 链接
5 Spike-and-Slab Shrinkage Priors for Structurally Sparse Bayesian Neural Networks Sanket Jantre;Shrijita Bhattacharya;Tapabrata Maiti(1Michigan State University, East Lansing, MI, USA 2Department of Statistics and Probability, Michigan State University, East Lansing, MI, USA) 结构稀疏贝叶斯神经网络的尖峰-平板收缩先验 IEEE transactions on neural networks and learning systems 2024 P1-13 链接
6 Low-Power FPGA-based Spiking Neural Networks for Real-Time Decoding of Intracortical Neural Activity Luca Martis1;Gianluca Leone1;Luigi Raffo1;Paolo Meloni1(1Department of Electrical and Electronic Engineering, University of Cagliari, Cagliari, Italy) 用于皮层内神经活动实时解码的低功耗FPGA基脉冲神经网络
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

BetterInsight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值