后端1-学习笔记

KF滤波器

参考:

卡尔曼滤波 -- 从推导到应用(一)_白巧克力亦唯心的博客-优快云博客_卡尔曼滤波算法

 卡尔曼滤波器原理简介_Aromash的博客-优快云博客_卡尔曼滤波原理

 从放弃到精通!卡尔曼滤波从理论到实践~_哔哩哔哩_bilibili

刚接触卡尔曼滤波器,被复杂的推导过程绕晕,现在梳理一下卡尔曼滤波的基本原理与实现过程。

卡尔曼滤波分为两步:

1. 使用上一次的最优结果预测当前的值

2. 同时使用观测值修正当前值,得到最优结果

整体上看卡尔曼滤波器相当于一个带反馈的闭环控制系统,融合已建立的数学模型和实际测量值推断出最优的解。

 以一辆向前行驶且有GPS定位的小车为例,可以构建如下的状态方程

来自:从放弃到精通!卡尔曼滤波从理论到实践~_哔哩哔哩_bilibili

 不难看出整个卡尔曼滤波的使用遵循以下6个步骤

1. 选择状态量、观测量

2. 构建方程

3. 初始化参数

4. 带入公式进行迭代

5. 调节超参数

EKF滤波器

由于SLAM中运动方程和观测方程通常是非线性的,因此为了将卡尔曼滤波器推广到非线性系统中,需要将运动方程和观测方程一阶泰勒展开,近似成线性系统。所以可以认为,在线性高斯系统下,卡尔曼滤波器给出最优无偏估计,在非线性下,给出了单此线性近似下的最优无偏估计。

EKF的局限性:

1. 假设了马尔可夫性,即k时刻状态只与k-1时刻相关

2. 由于EKF对运动方程和观测方程进行了一阶泰勒展开,近似成了线性系统,然后直接计算出了后验概率,就存在非线性误差。

3. EKF需要存储状态量的均值和方差,由于协方差与状态量呈平方增长,所以不适用大型场景

4. 没有异常检测机制,容易发散

BA与图优化

使用边缘化可以有效降低H矩阵的维度

鲁棒核函数的目的是保证每条边的误差不会过大掩盖其他的边

使用ceres优化BA

要注意eigen3.2系列的版本安装不了sophus,要先卸载

ubuntu16.04卸载、安装eigen_TB81266的博客-优快云博客_ubuntu卸载eigen3

Sophus库安装踩坑(SLAM十四讲)-爱代码爱编程

#include <iostream>
#include <ceres/ceres.h>
#include "common.h"
#include "SnavelyReprojectionError.h"

using namespace std;

void SolveBA(BALProblem &bal_problem);

int main(int argc, char **argv) {
    if (argc != 2) {
        cout << "usage: bundle_adjustment_ceres bal_data.txt" << endl;
        return 1;
    }

    BALProblem bal_problem(argv[1]);
    bal_problem.Normalize();
    bal_problem.Perturb(0.1, 0.5, 0.5);
    bal_problem.WriteToPLYFile("initial.ply");
    SolveBA(bal_problem);
    bal_problem.WriteToPLYFile("final.ply");

    return 0;
}

void SolveBA(BALProblem &bal_problem) {
    const int point_block_size = bal_problem.point_block_size();
    const int camera_block_size = bal_problem.camera_block_size();
    double *points = bal_problem.mutable_points();
    double *cameras = bal_problem.mutable_cameras();

    // Observations is 2 * num_observations long array observations
    // [u_1, u_2, ... u_n], where each u_i is two dimensional, the x
    // and y position of the observation.
    const double *observations = bal_problem.observations();
    ceres::Problem problem;

    for (int i = 0; i < bal_problem.num_observations(); ++i) {
        ceres::CostFunction *cost_function;

        // Each Residual block takes a point and a camera as input
        // and outputs a 2 dimensional Residual
        cost_function = SnavelyReprojectionError::Create(observations[2 * i + 0], observations[2 * i + 1]);

        // If enabled use Huber's loss function.
        ceres::LossFunction *loss_function = new ceres::HuberLoss(1.0);

        // Each observation corresponds to a pair of a camera and a point
        // which are identified by camera_index()[i] and point_index()[i]
        // respectively.
        double *camera = cameras + camera_block_size * bal_problem.camera_index()[i];
        double *point = points + point_block_size * bal_problem.point_index()[i];

        problem.AddResidualBlock(cost_function, loss_function, camera, point);
    }

    // show some information here ...
    std::cout << "bal problem file loaded..." << std::endl;
    std::cout << "bal problem have " << bal_problem.num_cameras() << " cameras and "
              << bal_problem.num_points() << " points. " << std::endl;
    std::cout << "Forming " << bal_problem.num_observations() << " observations. " << std::endl;

    std::cout << "Solving ceres BA ... " << endl;
    ceres::Solver::Options options;
    options.linear_solver_type = ceres::LinearSolverType::SPARSE_SCHUR;
    options.minimizer_progress_to_stdout = true;
    ceres::Solver::Summary summary;
    ceres::Solve(options, &problem, &summary);
    std::cout << summary.FullReport() << "\n";
}
#ifndef SnavelyReprojection_H
#define SnavelyReprojection_H

#include <iostream>
#include "ceres/ceres.h"
#include "rotation.h"

class SnavelyReprojectionError {
public:
    SnavelyReprojectionError(double observation_x, double observation_y) : observed_x(observation_x),
                                                                           observed_y(observation_y) {}

    template<typename T>
    bool operator()(const T *const camera,//括号运算符实现ceres计算误差的接口,传入三个参数,相机位姿,点的坐标,误差
                    const T *const point,
                    T *residuals) const {
        // camera[0,1,2] are the angle-axis rotation
        T predictions[2];//定义一个2维容器,用来计算投影误差
        CamProjectionWithDistortion(camera, point, predictions);
        residuals[0] = predictions[0] - T(observed_x);
        residuals[1] = predictions[1] - T(observed_y);

        return true;
    }

    // camera : 9 dims array
    // [0-2] : angle-axis rotation
    // [3-5] : translateion
    // [6-8] : camera parameter, [6] focal length, [7-8] second and forth order radial distortion
    // point : 3D location.
    // predictions : 2D predictions with center of the image plane.
    template<typename T>
    static inline bool CamProjectionWithDistortion(const T *camera, const T *point, T *predictions) {
        // Rodrigues' formula
        T p[3];
        AngleAxisRotatePoint(camera, point, p);
        // camera[3,4,5] are the translation
        p[0] += camera[3];
        p[1] += camera[4];
        p[2] += camera[5];

        // Compute the center of distortion
        T xp = -p[0] / p[2];
        T yp = -p[1] / p[2];

        // Apply second and fourth order radial distortion
        const T &l1 = camera[7];
        const T &l2 = camera[8];

        T r2 = xp * xp + yp * yp;
        T distortion = T(1.0) + r2 * (l1 + l2 * r2);

        const T &focal = camera[6];
        predictions[0] = focal * distortion * xp;
        predictions[1] = focal * distortion * yp;

        return true;
    }

    static ceres::CostFunction *Create(const double observed_x, const double observed_y) {
        return (new ceres::AutoDiffCostFunction<SnavelyReprojectionError, 2, 9, 3>(//每个相机有6维姿态,1维焦距和2维畸变参数
            new SnavelyReprojectionError(observed_x, observed_y)));
    }

private:
    double observed_x;
    double observed_y;
};

#endif // SnavelyReprojection.h

使用g2o优化BA

#include <g2o/core/base_vertex.h>
#include <g2o/core/base_binary_edge.h>
#include <g2o/core/block_solver.h>
#include <g2o/core/optimization_algorithm_levenberg.h>
#include <g2o/solvers/csparse/linear_solver_csparse.h>
#include <g2o/core/robust_kernel_impl.h>
#include <iostream>

#include "common.h"
#include "sophus/se3.hpp"

using namespace Sophus;
using namespace Eigen;
using namespace std;

/// 姿态和内参的结构
struct PoseAndIntrinsics {
    PoseAndIntrinsics() {}

    /// set from given data address
    explicit PoseAndIntrinsics(double *data_addr) {
        rotation = SO3d::exp(Vector3d(data_addr[0], data_addr[1], data_addr[2]));
        translation = Vector3d(data_addr[3], data_addr[4], data_addr[5]);
        focal = data_addr[6];
        k1 = data_addr[7];
        k2 = data_addr[8];
    }

    /// 将估计值放入内存
    void set_to(double *data_addr) {
        auto r = rotation.log();
        for (int i = 0; i < 3; ++i) data_addr[i] = r[i];
        for (int i = 0; i < 3; ++i) data_addr[i + 3] = translation[i];
        data_addr[6] = focal;
        data_addr[7] = k1;
        data_addr[8] = k2;
    }

    SO3d rotation;
    Vector3d translation = Vector3d::Zero();
    double focal = 0;
    double k1 = 0, k2 = 0;
};

/// 位姿加相机内参的顶点,9维,前三维为so3,接下去为t, f, k1, k2
class VertexPoseAndIntrinsics : public g2o::BaseVertex<9, PoseAndIntrinsics> {
public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW;

    VertexPoseAndIntrinsics() {}

    virtual void setToOriginImpl() override {
        _estimate = PoseAndIntrinsics();
    }

    virtual void oplusImpl(const double *update) override {
        _estimate.rotation = SO3d::exp(Vector3d(update[0], update[1], update[2])) * _estimate.rotation;
        _estimate.translation += Vector3d(update[3], update[4], update[5]);
        _estimate.focal += update[6];
        _estimate.k1 += update[7];
        _estimate.k2 += update[8];
    }

    /// 根据估计值投影一个点
    Vector2d project(const Vector3d &point) {
        Vector3d pc = _estimate.rotation * point + _estimate.translation;
        pc = -pc / pc[2];
        double r2 = pc.squaredNorm();
        double distortion = 1.0 + r2 * (_estimate.k1 + _estimate.k2 * r2);
        return Vector2d(_estimate.focal * distortion * pc[0],
                        _estimate.focal * distortion * pc[1]);
    }

    virtual bool read(istream &in) {}

    virtual bool write(ostream &out) const {}
};

class VertexPoint : public g2o::BaseVertex<3, Vector3d> {
public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW;

    VertexPoint() {}

    virtual void setToOriginImpl() override {
        _estimate = Vector3d(0, 0, 0);
    }

    virtual void oplusImpl(const double *update) override {
        _estimate += Vector3d(update[0], update[1], update[2]);
    }

    virtual bool read(istream &in) {}

    virtual bool write(ostream &out) const {}
};

class EdgeProjection :
    public g2o::BaseBinaryEdge<2, Vector2d, VertexPoseAndIntrinsics, VertexPoint> {
public:
    EIGEN_MAKE_ALIGNED_OPERATOR_NEW;

    virtual void computeError() override {
        auto v0 = (VertexPoseAndIntrinsics *) _vertices[0];
        auto v1 = (VertexPoint *) _vertices[1];
        auto proj = v0->project(v1->estimate());
        _error = proj - _measurement;
    }

    // use numeric derivatives
    virtual bool read(istream &in) {}

    virtual bool write(ostream &out) const {}

};

void SolveBA(BALProblem &bal_problem);

int main(int argc, char **argv) {

    if (argc != 2) {
        cout << "usage: bundle_adjustment_g2o bal_data.txt" << endl;
        return 1;
    }

    BALProblem bal_problem(argv[1]);
    bal_problem.Normalize();
    bal_problem.Perturb(0.1, 0.5, 0.5);
    bal_problem.WriteToPLYFile("initial.ply");
    SolveBA(bal_problem);
    bal_problem.WriteToPLYFile("final.ply");

    return 0;
}

void SolveBA(BALProblem &bal_problem) {
    const int point_block_size = bal_problem.point_block_size();
    const int camera_block_size = bal_problem.camera_block_size();
    double *points = bal_problem.mutable_points();
    double *cameras = bal_problem.mutable_cameras();

    // pose dimension 9, landmark is 3
    typedef g2o::BlockSolver<g2o::BlockSolverTraits<9, 3>> BlockSolverType;
    typedef g2o::LinearSolverCSparse<BlockSolverType::PoseMatrixType> LinearSolverType;
    // use LM
    auto solver = new g2o::OptimizationAlgorithmLevenberg(
        g2o::make_unique<BlockSolverType>(g2o::make_unique<LinearSolverType>()));
    g2o::SparseOptimizer optimizer;
    optimizer.setAlgorithm(solver);
    optimizer.setVerbose(true);

    /// build g2o problem
    const double *observations = bal_problem.observations();
    // vertex
    vector<VertexPoseAndIntrinsics *> vertex_pose_intrinsics;
    vector<VertexPoint *> vertex_points;
    for (int i = 0; i < bal_problem.num_cameras(); ++i) {
        VertexPoseAndIntrinsics *v = new VertexPoseAndIntrinsics();
        double *camera = cameras + camera_block_size * i;
        v->setId(i);
        v->setEstimate(PoseAndIntrinsics(camera));
        optimizer.addVertex(v);
        vertex_pose_intrinsics.push_back(v);
    }
    for (int i = 0; i < bal_problem.num_points(); ++i) {
        VertexPoint *v = new VertexPoint();
        double *point = points + point_block_size * i;
        v->setId(i + bal_problem.num_cameras());
        v->setEstimate(Vector3d(point[0], point[1], point[2]));
        // g2o在BA中需要手动设置待Marg的顶点
        v->setMarginalized(true);
        optimizer.addVertex(v);
        vertex_points.push_back(v);
    }

    // edge
    for (int i = 0; i < bal_problem.num_observations(); ++i) {
        EdgeProjection *edge = new EdgeProjection;
        edge->setVertex(0, vertex_pose_intrinsics[bal_problem.camera_index()[i]]);
        edge->setVertex(1, vertex_points[bal_problem.point_index()[i]]);
        edge->setMeasurement(Vector2d(observations[2 * i + 0], observations[2 * i + 1]));
        edge->setInformation(Matrix2d::Identity());
        edge->setRobustKernel(new g2o::RobustKernelHuber());
        optimizer.addEdge(edge);
    }

    optimizer.initializeOptimization();
    optimizer.optimize(40);

    // set to bal problem
    for (int i = 0; i < bal_problem.num_cameras(); ++i) {
        double *camera = cameras + camera_block_size * i;
        auto vertex = vertex_pose_intrinsics[i];
        auto estimate = vertex->estimate();
        estimate.set_to(camera);
    }
    for (int i = 0; i < bal_problem.num_points(); ++i) {
        double *point = points + point_block_size * i;
        auto vertex = vertex_points[i];
        for (int k = 0; k < 3; ++k) point[k] = vertex->estimate()[k];
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值