基础
逻辑线性回归(Logistic回归)的原理部分在上篇转载的博文讲解的已经很详细了。直接以示例程序给出
示例代码
from numpy import *
# 文本中加载样本,前两列为特征,最后一列为标签
def loadDataSet():
dataMat = []; labelMat = []
fr = open('testSet.txt')
for line in fr.readlines():
lineArr = line.strip().split()
dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
labelMat.append(int(lineArr[2]))
return dataMat, labelMat
# sigmoid函数
def sigmoid(inX):
return 1.0/(1 + exp(-inX))
# 逻辑线性回归(梯度上升or下降,符号不同而已)
def gradAscent(dataMatIn, classLabels):
dataMatrix = mat(dataMatIn)
labelMat = mat(classLabels).transpose()
m, n = shape(dataMatrix)
alpha = 0.001
maxCycles = 500
weights = ones((n, 1))
for k in range(maxCycles):
h = sigmoid(dataMatrix*weights)
error = (labelMat - h)
weights = weights + alpha * dataMatrix.transpose()*error # 该步骤是由Logistic回归公式求导得出
return weights, error
#随机梯度上升法
def stocGradAscent0(dataMatrix, classLabels):
m, n = shape(dataMatrix)
alpha = 0.01
weights = ones(n)
for i in range(m):
h = sigmoid(sum(dataMatrix[i]*weights))
error = classLabels[i] - h
weights = weights + alpha * error * dataMatrix[i]
return weights
# 改进的随机梯度上升算法,拟合更加接近
def stocGradAscent1(dataMatrix, classLabels, numIter = 150):
m, n = shape(dataMatrix)
weights = ones(n)
for j in range(numIter):
dataIndex = list(range(m))
for i in range(m):
alpha = 4/(1.0 + i + j) + 0.01
randIndex = int(random.uniform(0, len(dataIndex)))
h = sigmoid(sum(dataMatrix[randIndex]*weights))
error = classLabels[randIndex] - h
weights = weights + alpha*error*dataMatrix[randIndex]
del(dataIndex[randIndex])
return weights
def plotBestFit(weights):
import matplotlib.pyplot as plt
dataMat, labelMat = loadDataSet()
dataArr = array(dataMat)
n = shape(dataArr)[0]
xcord1 = []; ycord1 = []
xcord2 = []; ycord2 = []
for i in range(n):
if int(labelMat[i]) == 1:
xcord1.append(dataArr[i,1]); ycord1.append(dataArr[i,2])
else:
xcord2.append(dataArr[i,1]); ycord2.append(dataArr[i,2])
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(xcord1, ycord1, s = 30, c = 'red', marker = 's')
ax.scatter(xcord2, ycord2, s = 30, c = 'green')
x = arange(-3.0, 3.0, 0.1)
y = (-weights[0] - weights[1]*x)/weights[2]
ax.plot(x, y)
plt.xlabel('X1'); plt.ylabel('X2')
plt.show()
# 逻辑线性回归进行识别
def classifyVector(inX, weights):
prob = sigmoid(sum(inX*weights))
if prob > 0.5:
return 1.0
else:
return 0.0
# 病马死亡率预测, 缺失特征用0补齐,对结果影响不大
def colicTest():
frTrain = open('horseColicTraining.txt')
frTest = open('horseColicTest.txt')
trainingSet = []; trainingLabels = []
for line in frTrain.readlines():
currLine = line.strip().split('\t')
lineArr = []
for i in range(21):
lineArr.append(float(currLine[i]))
trainingSet.append(lineArr)
trainingLabels.append(float(currLine[21]))
trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 500)
errorCount = 0; numTestVec = 0.0
for line in frTest.readlines():
numTestVec += 1.0
currLine = line.strip().split('\t')
lineArr = []
for i in range(21):
lineArr.append(float(currLine[i]))
if int(classifyVector(array(lineArr), trainWeights))!= int(currLine[21]):
errorCount += 1
errorRate = (float(errorCount)/numTestVec)
print('the error rate of this test is : %f' %errorRate)
return errorRate
# 实例测试,最后平均错误率在35%左右
def multiTest():
numTests = 10; errorSum = 0.0
for k in range(numTests):
errorSum += colicTest()
print('after %d iterations the average error rate is: %f' % (numTests, errorSum/float(numTests)))
>>>结果
the error rate of this test is : 0.328358
the error rate of this test is : 0.432836
the error rate of this test is : 0.432836
the error rate of this test is : 0.283582
the error rate of this test is : 0.402985
the error rate of this test is : 0.402985
the error rate of this test is : 0.298507
the error rate of this test is : 0.313433
the error rate of this test is : 0.328358
the error rate of this test is : 0.358209
after 10 iterations the average error rate is: 0.358209
算法特点
- 优点:计算代价不高,易于理解和实现
- 缺点:容易欠拟合,分类精度可能不高
- 适用数据类型:数值型和标称型数据