The operation couldn’t be completed. (LaunchServicesError error 0.)

问题描述:当运行Xcode6时,编译代码成功,但是登陆模拟器失败,显示错误:The Operation couldn't be completed.(LaunchServicesError error 0.)

解决办法:第1种方法.点击当前的模拟器,点击 IOS Simulator->Reset Content and Settings...->Reset,然后会重置模拟器,再编译代码可登录模拟器成功
                  第2种方法.点击Xcode->Product->Clean
                  第3种方法.将模拟器上的当前运行的app删除,再重新加载(长按模拟器的屏幕,点击当前报错的app 删除)
                  第4种方法.在info.plist文件中修改bundle的版本号
我遇到的问题是上述几种方法只能暂时解决,当我一修改代码时,又重新报错,然后我把我项目里的那个Resources(就是存储图片的那个包)给删除了,然后重新建分组,但是资源包的名字不叫Resources,然后重新clean,结果问题解决了,我想原因可能是我的Resources与Xcode里冲突了,然后Xcode不能打包app到模拟器上吧
我的使用了第一种方法即解决了问题。
### STM32F4 PB0 ADC Configuration and Usage For configuring the ADC on pin PB0 of an STM32F4 microcontroller, several steps are necessary to ensure proper operation. The configuration involves setting up GPIO pins as analog inputs, initializing the ADC peripheral, starting conversions, and handling interrupts if required. #### Configuring PB0 as Analog Input To use PB0 for ADC conversion, this pin must be configured as an analog input mode rather than a digital one: ```c GPIO_InitTypeDef GPIO_InitStruct; // Enable clock for GPIOB __HAL_RCC_GPIOB_CLK_ENABLE(); // Configure PB0 as analog input (ADC channel) GPIO_InitStruct.Pin = GPIO_PIN_0; GPIO_InitStruct.Mode = GPIO_MODE_ANALOG; GPIO_InitStruct.Pull = GPIO_NOPULL; HAL_GPIO_Init(GPIOB, &GPIO_InitStruct); ``` This setup ensures that PB0 operates correctly with the ADC by disabling any internal pull-up or pull-down resistors which could interfere with accurate voltage measurements[^1]. #### Initializing the ADC Peripheral The next step is initializing the ADC peripheral itself. This includes enabling its clock, configuring parameters such as resolution, data alignment, external trigger source/conversion start condition, continuous mode settings, etc., and finally activating it: ```c ADC_ChannelConfTypeDef sConfig = {0}; // Enable clock for ADC1 __HAL_RCC_ADC1_CLK_ENABLE(); hadc1.Instance = ADC1; hadc1.Init.ClockPrescaler = ADC_CLOCK_SYNC_PCLK_DIV4; hadc1.Init.Resolution = ADC_RESOLUTION_12B; hadc1.Init.ScanConvMode = DISABLE; hadc1.Init.ContinuousConvMode = ENABLE; hadc1.Init.DiscontinuousConvMode = DISABLE; hadc1.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE; hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT; hadc1.Init.NbrOfConversion = 1; if (HAL_ADC_Init(&hadc1) != HAL_OK){ // Initialization Error } sConfig.Channel = ADC_CHANNEL_8; // Channel corresponding to PB0 sConfig.Rank = 1; sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES; if (HAL_ADC_ConfigChannel(&hadc1, &sConfig) != HAL_OK){ // Channel Configuration Error } ``` In this code snippet, `ADC_CHANNEL_8` corresponds specifically to the connection between ADC1_IN8 and PB0 based on the STM32F4 series reference manual mapping table. Continuous conversion mode has been enabled here so that once started, multiple conversions will occur automatically without needing further software triggers unless explicitly stopped. #### Starting Conversions and Reading Data Once everything is set up properly, initiating conversions can happen through either polling methods where you wait until completion using blocking calls like `HAL_ADC_Start()` followed by reading results via `HAL_ADC_GetValue()`, or non-blocking approaches involving interrupt handlers when asynchronous behavior is desired: Interrupt-based approach example: ```c void StartADCCallback(void){ /* Ensure no pending flags */ __HAL_ADC_CLEAR_FLAG(&hadc1, ADC_FLAG_EOC); /* Start Conversion */ if(HAL_ADC_Start_IT(&hadc1)!= HAL_OK){ // Handle error } } /* Inside your Interrupt Handler Function */ void HAL_ADC_ConvCpltCallback(ADC_HandleTypeDef* hadc){ uint32_t adc_value = HAL_ADC_GetValue(hadc); // Process converted value... } ``` Here, after ensuring there aren't already completed but unprocessed conversions (`__HAL_ADC_CLEAR_FLAG`), conversion starts within an interrupt context (`StartADCCallback`). Upon finishing each sample-and-hold cycle, hardware generates an end-of-conversion event triggering execution flow into `HAL_ADC_ConvCpltCallback`. Within this callback function, retrieving sampled values occurs safely from RAM buffers managed internally by the driver layer[^2]. --related questions-- 1. How does changing the sampling time affect ADC accuracy? 2. What considerations should be taken while selecting different ADC channels simultaneously? 3. Can DMA transfers improve performance during bulk acquisitions? If yes, how would they integrate with existing configurations shown above? 4. Are there specific power management guidelines associated with running ADC operations efficiently? 5. In what scenarios might calibration routines become essential before performing precise measurements?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值