题意:给出一百个点的坐标,任意两点之间都有边,求将所有点连接起来的最短的所有边长和
链接:http://acm.hdu.edu.cn/showproblem.php?pid=1875
思路:最小生成树模板,稠密图,对边的长度进行筛选即可
注意点:无
以下为AC代码:
Run ID | Submit Time | Judge Status | Pro.ID | Exe.Time | Exe.Memory | Code Len. | Language | Author |
13162929 | 2015-03-18 13:37:43 | Accepted | 1875 | 171MS | 2196K | 5231 B | G++ | luminous11 |
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <iostream>
#include <cstring>
#include <cstdio>
#include <string>
#include <vector>
#include <deque>
#include <list>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <cmath>
#include <ctime>
#include <cctype>
#include <climits>
#include <iomanip>
#include <cstdlib>
#include <algorithm>
//#include <unordered_map>
//#include <unordered_set>
#define ll long long
#define ull unsigned long long
#define all(x) (x).begin(), (x).end()
#define clr(a, v) memset( a , v , sizeof(a) )
#define pb push_back
#define RDI(a) scanf ( "%d", &a )
#define RDII(a, b) scanf ( "%d%d", &a, &b )
#define RDIII(a, b, c) scanf ( "%d%d%d", &a, &b, &c )
#define RS(s) scanf ( "%s", s )
#define PI(a) printf ( "%d", a )
#define PIL(a) printf ( "%d\n", a )
#define PII(a,b) printf ( "%d %d", a, b )
#define PIIL(a,b) printf ( "%d %d\n", a, b )
#define PIII(a,b,c) printf ( "%d %d %d", a, b, c )
#define PIIIL(a,b,c) printf ( "%d %d %d\n", a, b, c )
#define PL() printf ( "\n" )
#define PSL(s) printf ( "%s\n", s )
#define rep(i,m,n) for ( int i = m; i < n; i ++ )
#define REP(i,m,n) for ( int i = m; i <= n; i ++ )
#define dep(i,m,n) for ( int i = m; i > n; i -- )
#define DEP(i,m,n) for ( int i = m; i >= n; i -- )
#define repi(i,m,n,k) for ( int i = m; i < n; i += k )
#define REPI(i,m,n,k) for ( int i = m; i <= n; i += k )
#define depi(i,m,n,k) for ( int i = m; i > n; i += k )
#define DEPI(i,m,n,k) for ( int i = m; i >= n; i -= k )
#define READ(f) freopen(f, "r", stdin)
#define WRITE(f) freopen(f, "w", stdout)
using namespace std;
const double pi = acos(-1);
template <class T>
inline bool RD ( T &ret )
{
char c;
int sgn;
if ( c = getchar(), c ==EOF )return 0; //EOF
while ( c != '-' && ( c < '0' || c > '9' ) ) c = getchar();
sgn = ( c == '-' ) ? -1 : 1;
ret = ( c == '-' ) ? 0 : ( c - '0' );
while ( c = getchar() , c >= '0' && c <= '9' ) ret = ret * 10 + ( c - '0' );
ret *= sgn;
return 1;
}
inline void PD ( int x )
{
if ( x > 9 ) PD ( x / 10 );
putchar ( x % 10 + '0' );
}
const double eps = 1e-10;
const int dir[4][2] = { 1,0, -1,0, 0,1, 0,-1 };
struct node{
int x, y, cnt;
double dis;
node(){}
node( int _x, int _y ) : x(_x), y(_y) {}
node( int _x, int _y, int _cnt ) : x(_x), y(_y), cnt(_cnt) {}
node( int _x, int _y, double _dis ) : x(_x), y(_y), dis(_dis) {}
friend bool operator < ( const node &a, const node &b ){
return a.dis > b.dis;
}
}p[105];
int n;
double ans;
priority_queue<node> pq;
double calc ( int x, int y )
{
int xi = p[x].x - p[y].x;
int yi = p[x].y - p[y].y;
int tmp = ( xi * xi ) + ( yi * yi );
return sqrt( (double)tmp );
}
int fa[105];
int ran[105];
int find( int x )
{
//cout << x << endl;
return x == fa[x] ? x : find( fa[x] );
}
bool kruskal()
{
int cnt = 1;
while ( ! pq.empty() ){
node tmp = pq.top();
//cout << tmp.x << ' ' << tmp.y << ' ' << tmp.dis << endl;
pq.pop();
int xi = find ( tmp.x );
int yi = find ( tmp.y );
//cout << xi << ' ' << yi << endl;
if ( xi == yi )continue;
else{
cnt ++;
if ( ran[xi] < ran[yi] ){
fa[xi] = yi;
ran[yi] = max ( ran[yi], ran[xi] + 1 );
}
else{
fa[yi] = xi;
ran[xi] = max ( ran[xi], ran[yi] + 1 );
}
ans += tmp.dis;
}
if ( cnt == n )return true;
}
return false;
}
void init()
{
while ( ! pq.empty() ) pq.pop();
ans = 0.0;
rep ( i, 0, 105 )fa[i] = i;
clr ( ran, 0 );
}
int main()
{
int T;
RDI ( T );
while ( T -- ){
init();
RDI ( n );
rep ( i, 0, n ){
RDII ( p[i].x, p[i].y );
}
double tmp;
ans = 0.0;
rep ( i, 0, n ){
rep ( j, 0, i ){
tmp = calc ( i, j );
if ( tmp > 9.9999999 && tmp < 1000.000001 ){
pq.push ( node ( i, j, tmp ) );
}
}
}
if ( kruskal() ){
printf ( "%0.1f\n", ans * 100 );
}
else{
printf ( "oh!\n" );
}
}
return 0;
}