题意:给n个城市,m条路径,表示从a->b需要t时间,每个城市有一个满意度si,游览这个城市需要花费ti时间,若经过城市不游览则不需要花费时间,且后访问的城市的满意度必须比前一个城市高。已知起点与终点,求在花费T时间的时限内,能够获得的最大的满意度。
链接:http://acm.hdu.edu.cn/showproblem.php?pid=4571
思路:先用floyd求出城市之间的最短距离,剩下在有限的T时间内得到尽可能多的满意度,用01背包即可。状态转移方程为:
注意点:对结构体排序后,下标改变,需要用一个额外数组对下标进行存储,便于快速查找i节点。
以下为AC代码:
Run ID | Submit Time | Judge Status | Pro.ID | Exe.Time | Exe.Memory | Code Len. | Language | Author |
12535950 | 2014-12-18 19:14:02 | Accepted | 4571 | 982MS | 1332K | 3217 B | C++ | luminous11 |
#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <vector>
#include <deque>
#include <list>
#include <cctype>
#include <algorithm>
#include <climits>
#include <queue>
#include <stack>
#include <cmath>
#include <map>
#include <set>
#include <iomanip>
#include <cstdlib>
#include <ctime>
#define ll long long
#define ull unsigned long long
#define all(x) (x).begin(), (x).end()
#define clr(a, v) memset( a , v , sizeof(a) )
#define pb push_back
#define mp make_pair
#define read(f) freopen(f, "r", stdin)
#define write(f) freopen(f, "w", stdout)
using namespace std;
struct node
{
int p;
int sati;
int t;
node() {}
bool operator < ( const node& a )const
{
return sati < a.sati;
}
}adj[1005];
int m, n, s, t, e;
int maxn;
int g[105][105];
int dp[105][305];
int h[105];
int vis[105];
void floyd ( )
{
for ( int i = 0; i < n; i ++ )
{
for ( int j = 0; j < n; j ++ )
{
for ( int k = 0; k < n; k ++ )
{
if ( g[j][k] > g[j][i] + g[i][k] )
{
g[j][k] = g[j][i] + g[i][k];
}
}
}
}
}
int solve ( )
{
for ( int i = 0; i < n; i ++ )
{
for ( int j = adj[i].t + g[i][s]; j <= t; j ++ )
{
dp[i][j] = adj[i].sati;
}
}
for ( int i = 0; i < n; i ++ )
{
for ( int j = 0; j < i; j ++ )
{
if ( adj[i].sati == adj[j].sati )break;
for ( int k = adj[i].t + g[i][j]; k <= t; k ++ )
{
if ( dp[j][k - adj[i].t - g[i][j]] == -1 )continue;
dp[i][k] = max ( dp[i][k], dp[j][k - adj[i].t - g[i][j]] + adj[i].sati );
}
}
}
int ans = 0;
for ( int i = 0; i < n; i ++ )
{
for ( int j = 0; j <= t; j ++ )
{
if ( j + g[i][e] > t )break;
ans = max ( ans, dp[i][j] );
}
}
return ans;
}
void init ()
{
clr ( adj, 0 );
clr ( g, 0x3f );
clr ( dp, -1 );
maxn = 0;
}
int main()
{
int ncase;
cin >> ncase;
for ( int ti = 1; ti <= ncase; ti ++ )
{
init();
cin >> n >> m >> t >> s >> e;
for ( int i = 0; i < n; i ++ )
{
cin >> adj[i].t;
}
for ( int i = 0; i < n; i ++ )
{
cin >> adj[i].sati;
adj[i].p = i;
g[i][i] = 0;
}
sort ( adj, adj + n );
for ( int i = 0; i < n; i ++ )
{
h[adj[i].p] = i;
}
s = h[s];
e = h[e];
int a, b, len;
for ( int i = 0; i < m; i ++ )
{
cin >> a >> b >> len;
a = h[a];
b = h[b];
if ( g[a][b] > len )
{
g[a][b] = g[b][a] = len;
}
}
floyd ();
cout << "Case #" << ti << ":" << endl;
if ( g[s][e] > t ){ cout << "0" << endl; continue;}
cout << solve () << endl;
}
return 0;
}