现金1.8kw, 年入150w, 财务不自由...

他的生活状态无疑是许多人梦寐以求的。拥有两套无贷款的房产,家庭和睦,两台车价值约50万元。现金资产高达1800万元,家庭年收入约150万元,职业稳定,属于中层管理阶层。

fc319f7dc3896f8c2447bb4289704c24.jpeg

重要的是,孩子们的成绩优异,985高校的录取通知书对他们来说只是保底选择。

这是这两天某论坛上一个网友的故事。

570bca97fcfcc71658bdd807f38dca3e.png

尽管已经达到他的生活似乎已经达到了许多人梦寐以求的财务半自由状态,但他发现自己在面对一些高端消费时仍然会感到犹豫。他可以轻松购买价值1万元以内的物品,无需承受任何心理负担。苹果手机、家用电器对他来说,更换起来轻而易举。在餐馆和超市,他可以随心所欲地消费,即使是人均500元、1000元的餐厅,他也能经常光顾。

然而,对于头等舱机票、高铁商务座,他却始终舍不得购买。面对演出票、球赛票,即使是黄牛票,他也觉得价格不菲。商场里几千元一件的衣服,在他看来就像是在欺骗消费者。每当他考虑购买价值超过1万元的大件物品时,他总是需要权衡很久,因为他知道,如果这样挥霍无度,即使是1000万元的资产,也经不起多久的消耗。

每年,他都会安排一两次旅行,每次花费两三万元。他看着周围的朋友和同事花费八九万、甚至十几二十万元去旅行,心中不禁感到不舍。他的生活状态,虽然在物质上已经相对自由,但在精神上,他仍然在寻找着某种平衡。

其实吧,他就是想太多。钱是有了,可心里还是不踏实。这就像吃东西一样,你吃第一口的时候特别香,可你一直吃,吃到撑了,也就没啥感觉了。而且,总想得到更多。看到别人过的比自己好,难免会有点攀比心理。

人啊,总是这样,当你拥有了更多,反而会更担心失去。他就像站在山顶上的人,虽然风景很美,但总担心会摔下去。

当然,不同的阶段有不同的困惑,如果你现在:

  • 职业规划迷茫? 

  • 简历屡被拒?

  • 面试频频挂?

  • 想转行却不知从何下手?

  • 副业想做却无从开启?

  • 个人IP打造不得要领?

如果你也遇到以上问题,可以参考《Raymond使用指南》,找到属于你的职业新方向!

3f374b3189e1d3ac6d9c3c5e17d38aa2.jpeg

基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究(Matlab代码实现)内容概要:本文围绕“基于数据驱动的 Koopman 算子的递归神经网络模型线性化,用于纳米定位系统的预测控制研究”展开,提出了一种结合数据驱动方法与Koopman算子理论的递归神经网络(RNN)模型线性化方法,旨在提升纳米定位系统的预测控制精度与动态响应能力。研究通过构建数据驱动的线性化模型,克服了传统非线性系统建模复杂、计算开销大的问题,并在Matlab平台上实现了完整的算法仿真与验证,展示了该方法在高精度定位控制中的有效性与实用性。; 适合人群:具备一定自动化、控制理论或机器学习背景的科研人员与工程技术人员,尤其是从事精密定位、智能控制、非线性系统建模与预测控制相关领域的研究生与研究人员。; 使用场景及目标:①应用于纳米级精密定位系统(如原子力显微镜、半导体制造设备)中的高性能预测控制;②为复杂非线性系统的数据驱动建模与线性化提供新思路;③结合深度学习与经典控制理论,推动智能控制算法的实际落地。; 阅读建议:建议读者结合Matlab代码实现部分,深理解Koopman算子与RNN结合的建模范式,重点关注数据预处理、模型训练与控制系统集成等关键环节,并可通过替换实际系统数据进行迁移验证,以掌握该方法的核心思想与工程应用技巧。
基于粒子群算法优化Kmeans聚类的居民用电行为分析研究(Matlb代码实现)内容概要:本文围绕基于粒子群算法(PSO)优化Kmeans聚类的居民用电行为分析展开研究,提出了一种结合智能优化算法与传统聚类方法的技术路径。通过使用粒子群算法优化Kmeans聚类的初始聚类中心,有效克服了传统Kmeans算法易陷局部最优、对初始值敏感的问题,提升了聚类的稳定性和准确性。研究利用Matlab实现了该算法,并应用于居民用电数据的行为模式识别与分类,有助于精细化电力需求管理、用户画像构建及个性化用电服务设计。文档还提及相关应用场景如负荷预测、电力系统优化等,并提供了配套代码资源。; 适合人群:具备一定Matlab编程基础,从事电力系统、智能优化算法、数据分析等相关领域的研究人员或工程技术人员,尤其适合研究生及科研人员。; 使用场景及目标:①用于居民用电行为的高效聚类分析,挖掘典型用电模式;②提升Kmeans聚类算法的性能,避免局部最优问题;③为电力公司开展需求响应、负荷预测和用户分群管理提供技术支持;④作为智能优化算法与机器学习结合应用的教学与科研案例。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,深理解PSO优化Kmeans的核心机制,关注参数设置对聚类效果的影响,并尝试将其应用于其他相似的数据聚类问题中,以加深理解和拓展应用能力。
在大数据技术快速发展的背景下,网络爬虫已成为信息收集与数据分析的关键工具。Python凭借其语法简洁和功能丰富的优势,被广泛用于开发各类数据采集程序。本项研究“基于Python的企查查企业信息全面采集系统”即在此趋势下设计,旨在通过编写自动化脚本,实现对企查查平台所公示的企业信用数据的系统化抓取。 该系统的核心任务是构建一个高效、可靠且易于扩展的网络爬虫,能够模拟用户登录企查查网站,并依据预设规则定向获取企业信息。为实现此目标,需重点解决以下技术环节:首先,必须深解析目标网站的数据组织与呈现方式,包括其URL生成规则、页面HTML架构以及可能采用的JavaScript动态渲染技术。准确掌握这些结构特征是制定有效采集策略、保障数据完整与准确的前提。 其次,针对网站可能设置的反爬虫机制,需部署相应的应对方案。例如,通过配置模拟真实浏览器的请求头部信息、采用多代理IP轮换策略、合理设置访问时间间隔等方式降低被拦截风险。同时,可能需要借助动态解析技术处理由JavaScript加载的数据内容。 在程序开发层面,将充分利用Python生态中的多种工具库:如使用requests库发送网络请求,借助BeautifulSoup或lxml解析网页文档,通过selenium模拟浏览器交互行为,并可基于Scrapy框架构建更复杂的爬虫系统。此外,json库用于处理JSON格式数据,pandas库则协助后续的数据整理与分析工作。 考虑到采集的数据规模可能较大,需设计合适的数据存储方案,例如选用MySQL或MongoDB等数据库进行持久化保存。同时,必须对数据进行清洗、去重与结构化处理,以确保其质量满足后续应用需求。 本系统还需包含运行监控与维护机制。爬虫执行过程中可能遭遇网站结构变更、数据格式调整等意外情况,需建立及时检测与自适应调整的能力。通过定期分析运行日志,评估程序的效率与稳定性,并持续优化其性能表现。 综上所述,本项目仅涉及核心爬虫代码的编写,还需在反爬应对、数据存储及系统维护等方面进行周密设计。通过完整采集企查查的企业数据,该系统可为市场调研、信用评价等应用领域提供大量高价值的信息支持。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值