Description
Given a set of distinct integers, nums, return all possible subsets (the power set).
Note: The solution set must not contain duplicate subsets.
Example:
Input: nums = [1,2,3]
Output:
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]
Solution
core idea:
- pick one element and pass the elements not picked before to next iteration.
class Solution {
public:
vector<vector<int>> subsets(vector<int>& nums) {
vector<vector<int>> result;
vector<int> empty;
result.push_back(empty);
if(nums.size() == 0) {
return result;
}
for(int i = 1; i <= nums.size(); i++) {
vector<int> record;
powerset(result, record, nums, i);
}
return result;
}
void powerset(vector<vector<int>> &result, vector<int> &select, vector<int> &left, int count) {
if(select.size() == count){
result.push_back(select);
return;
}
// select[] left[1,2,3,4]
// select[1] left[2,3,4]
// select[2] left[3,4]
// select[3] left[4]
// select[4] left[]
for(int i = 0; i < left.size(); i++) {
select.push_back(left[i]);
vector<int> temp = left;
temp.erase(temp.begin(), temp.begin() + i + 1);
if(temp.size() + select.size()>= count) {
powerset(result, select, temp, count);
}
select.pop_back();
}
}
};
本文深入探讨了在给定一组不重复整数的情况下,如何利用递归算法生成所有可能的子集(幂集)。通过详细的代码示例,阐述了核心思想:在每一层递归中选择一个元素,并将未被选中的元素传递到下一层递归,从而避免重复子集的产生。
201

被折叠的 条评论
为什么被折叠?



