Understand of WOE and IV in feature engineering

本文介绍了WOE(证据权重)和IV(信息价值)的概念及其在预测模型中的作用。WOE用于衡量独立变量对因变量的影响力度,而IV则用于评估预测变量的重要性。文中还详细阐述了WOE的计算步骤及IV的计算公式,并提供了它们的实际应用场景。
部署运行你感兴趣的模型镜像

Introduction of WOE

WOE(weight of evidences) tells the power of an idependent variable in relation to the dependent variable.

Formula

for each group i:

WOE = ln(% of non-events / % of events)

Steps of Calculating WOE

  1. For a continuous variable, split data into N group (or lesser depending on the distribution).
  2. Calculate the number of events and non-events in each group (bin)
  3. Calculate the % of events and % of non-events in each group.
  4. Calculate WOE by taking natural log of division of % of non-events and % of events

Benefits of WOE

  • It can treat outliers. Suppose you have a continuous variable such as annual salary and extreme values are more than 500 million dollars. These values would be grouped to a class of (let’s say 250-500 million dollars). Later, instead of using the raw values, we would be using WOE scores of each classes.
  • It can handle missing values as missing values can be binned separately.
    Since WOE Transformation handles categorical variable so there is no need for dummy variables.
  • WoE transformation helps you to build strict linear relationship with log odds. Otherwise it is not easy to accomplish linear relationship using other transformation methods such as log, square-root etc. In short, if you would not use WOE transformation, you may have to try out several transformation methods to achieve this.
  • Encode class value with continuous value.
  • Reduce columns of the input values for training model after encoding like one-hot.

Introduction of IV

Information value is one of the most useful technique to select important variables in a predictive model. It helps to rank variables on the basis of their importance.

Formula

For each group i of variable x:

IVx =  ∑ (for events in i: % of non-events - % of events) * WOEi

Rules related to Information Value

Information ValueVariable Predictiveness
Less than 0.02Not useful for prediction
0.02 to 0.1Weak predictive Power
0.1 to 0.3Medium predictive Power
0.3 to 0.5Strong predictive Power
>0.5Suspicious Predictive Power

Benefit of IV

  • provide a basis for us to drill down further in our relationship analysis between independent and dependent variables.
  • if variable is a qualitative type, we can use binning method followed by WoE and IV concepts to engineer meaningful features.

Reference

  1. https://towardsdatascience.com/model-or-do-you-mean-weight-of-evidence-woe-and-information-value-iv-331499f6fc2
  2. https://www.listendata.com/2015/03/weight-of-evidence-woe-and-information.html

您可能感兴趣的与本文相关的镜像

ACE-Step

ACE-Step

音乐合成
ACE-Step

ACE-Step是由中国团队阶跃星辰(StepFun)与ACE Studio联手打造的开源音乐生成模型。 它拥有3.5B参数量,支持快速高质量生成、强可控性和易于拓展的特点。 最厉害的是,它可以生成多种语言的歌曲,包括但不限于中文、英文、日文等19种语言

基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究(Matlab代码实现)内容概要:本文围绕“基于可靠性评估序贯蒙特卡洛模拟法的配电网可靠性评估研究”,介绍了利用Matlab代码实现配电网可靠性的仿真分析方法。重点采用序贯蒙特卡洛模拟法对配电网进行长时间段的状态抽样与统计,通过模拟系统元件的故障与修复过程,评估配电网的关键可靠性指标,如系统停电频率、停电持续时间、负荷点可靠性等。该方法能够有效处理复杂网络结构与设备时序特性,提升评估精度,适用于含分布式电源、电动汽车等新型负荷接入的现代配电网。文中提供了完整的Matlab实现代码与案例分析,便于复现和扩展应用。; 适合人群:具备电力系统基础知识和Matlab编程能力的高校研究生、科研人员及电力行业技术人员,尤其适合从事配电网规划、运行与可靠性分析相关工作的人员; 使用场景及目标:①掌握序贯蒙特卡洛模拟法在电力系统可靠性评估中的基本原理与实现流程;②学习如何通过Matlab构建配电网仿真模型并进行状态转移模拟;③应用于含新能源接入的复杂配电网可靠性定量评估与优化设计; 阅读建议:建议结合文中提供的Matlab代码逐段调试运行,理解状态抽样、故障判断、修复逻辑及指标统计的具体实现方式,同时可扩展至不同网络结构或加入更多不确定性因素进行深化研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值