Understand of WOE and IV in feature engineering

本文介绍了WOE(证据权重)和IV(信息价值)的概念及其在预测模型中的作用。WOE用于衡量独立变量对因变量的影响力度,而IV则用于评估预测变量的重要性。文中还详细阐述了WOE的计算步骤及IV的计算公式,并提供了它们的实际应用场景。
部署运行你感兴趣的模型镜像

Introduction of WOE

WOE(weight of evidences) tells the power of an idependent variable in relation to the dependent variable.

Formula

for each group i:

WOE = ln(% of non-events / % of events)

Steps of Calculating WOE

  1. For a continuous variable, split data into N group (or lesser depending on the distribution).
  2. Calculate the number of events and non-events in each group (bin)
  3. Calculate the % of events and % of non-events in each group.
  4. Calculate WOE by taking natural log of division of % of non-events and % of events

Benefits of WOE

  • It can treat outliers. Suppose you have a continuous variable such as annual salary and extreme values are more than 500 million dollars. These values would be grouped to a class of (let’s say 250-500 million dollars). Later, instead of using the raw values, we would be using WOE scores of each classes.
  • It can handle missing values as missing values can be binned separately.
    Since WOE Transformation handles categorical variable so there is no need for dummy variables.
  • WoE transformation helps you to build strict linear relationship with log odds. Otherwise it is not easy to accomplish linear relationship using other transformation methods such as log, square-root etc. In short, if you would not use WOE transformation, you may have to try out several transformation methods to achieve this.
  • Encode class value with continuous value.
  • Reduce columns of the input values for training model after encoding like one-hot.

Introduction of IV

Information value is one of the most useful technique to select important variables in a predictive model. It helps to rank variables on the basis of their importance.

Formula

For each group i of variable x:

IVx =  ∑ (for events in i: % of non-events - % of events) * WOEi

Rules related to Information Value

Information ValueVariable Predictiveness
Less than 0.02Not useful for prediction
0.02 to 0.1Weak predictive Power
0.1 to 0.3Medium predictive Power
0.3 to 0.5Strong predictive Power
>0.5Suspicious Predictive Power

Benefit of IV

  • provide a basis for us to drill down further in our relationship analysis between independent and dependent variables.
  • if variable is a qualitative type, we can use binning method followed by WoE and IV concepts to engineer meaningful features.

Reference

  1. https://towardsdatascience.com/model-or-do-you-mean-weight-of-evidence-woe-and-information-value-iv-331499f6fc2
  2. https://www.listendata.com/2015/03/weight-of-evidence-woe-and-information.html

您可能感兴趣的与本文相关的镜像

ACE-Step

ACE-Step

音乐合成
ACE-Step

ACE-Step是由中国团队阶跃星辰(StepFun)与ACE Studio联手打造的开源音乐生成模型。 它拥有3.5B参数量,支持快速高质量生成、强可控性和易于拓展的特点。 最厉害的是,它可以生成多种语言的歌曲,包括但不限于中文、英文、日文等19种语言

基于实时迭代的数值鲁棒NMPC双模稳定预测模型(Matlab代码实现)内容概要:本文介绍了基于实时迭代的数值鲁棒非线性模型预测控制(NMPC)双模稳定预测模型的研究与Matlab代码实现,重点在于提升系统在存在不确定性与扰动情况下的控制性能与稳定性。该模型结合实时迭代优化机制,增强了传统NMPC的数值鲁棒性,并通过双模控制策略兼顾动态响应与稳态精度,适用于复杂非线性系统的预测控制问题。文中还列举了多个相关技术方向的应用案例,涵盖电力系统、路径规划、信号处理、机器学习等多个领域,展示了该方法的广泛适用性与工程价值。; 适合人群:具备一定控制理论基础和Matlab编程能力,从事自动化、电气工程、智能制造、机器人控制等领域研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①应用于非线性系统的高性能预测控制设计,如电力系统调度、无人机控制、机器人轨迹跟踪等;②解决存在模型不确定性、外部扰动下的系统稳定控制问题;③通过Matlab仿真验证控制算法的有效性与鲁棒性,支撑科研论文复现与工程原型开发。; 阅读建议:建议读者结合提供的Matlab代码进行实践,重点关注NMPC的实时迭代机制与双模切换逻辑的设计细节,同时参考文中列举的相关研究方向拓展应用场景,强化对数值鲁棒性与系统稳定性之间平衡的理解。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值