机器学习线性模型(2)

我们已经知道如何使用线性模型进行回归学习,如果要做分类任务呢?

广义线性模型:y=g1(wTx+b)y=g−1(wTx+b)

现在只需找到一个单调可微函数g1g−1将分类任务的真实标记yy与线性回归模型的预测值wTx+b联系起来.

考虑二分类任务,y{0,1}y∈{0,1},z=wTx+bz=wTx+b 是实值,将实值z转化微0/1值,最理想的是单位跃进函数

y=0,0.5,1,z<0z=0z>0y={0,z<00.5,z=01,z>0

但是单位跃进函数不连续,不是我们要找的g1g−1,所以要找一个在一定程度上近似单位跃进函数的单调可微的函数,就是对数几率函数(logistic function)
y=11+ezy=11+e−z

这里写图片描述

从图中可以看到,对数几率函数是一种sigmoid函数(形似S的函数)

将对数几率函数作为g1g−1,得到

y=11+e(wTx+b)(1)y=11+e−(wTx+b)————————(1)

做变换后:
lny1y=wTx+b(2)lny1−y=wTx+b————————(2)

若将y视作x作为正例的可能性,则1-y是x作为反例的可能性,y1yy1−y称作几率,lny1ylny1−y称为对数几率

可以看出式(2)是在用线性回归模型的预测结果去逼近真实标记y的对数几率,对应的模型叫对数几率回归模型(logistic regression), 注意:它实际是一种分类学习方法。

如何来确定(1)式中的ww和b?将y视为类后验概率估计p(y=1|x)p(y=1|x),得到下式:

lnp(y=1|x)p(y=0|x)=wTx+blnp(y=1|x)p(y=0|x)=wTx+b

p(y=1|x)1p(y=1|x)=ewTx+b⇒p(y=1|x)1−p(y=1|x)=ewTx+b

p(y=1|x)=ewTx+bewTx+b+1⇒p(y=1|x)=ewTx+bewTx+b+1

显然,
p(y=0|x)=1ewTx+b+1⇒p(y=0|x)=1ewTx+b+1

于是,我们可以通过极大似然法来估计ww和b,给定数据集(xi,yi),i=1,2,m(xi,yi),i=1,2…,m,对数几率回归模型最大化对数似然,即每个样本属于其真实标记的概率越大越好
(w,b)=i=1mlnp(yi|xi;w,b)ℓ(w,b)=∑i=1mlnp(yi|xi;w,b)

令:β=(w;b)β=(w;b)x^=(x;1)x^=(x;1),故wTx+b=βTx^wTx+b=βTx^
令: p1(x^;β)=p(y=1|x^;β)p1(x^;β)=p(y=1|x^;β),p0(x^;β)=p(y=0|x^;β)p0(x^;β)=p(y=0|x^;β)

似然项可以重写为:

p(yi|xi;w,b)=yip1(x^;β)+(1yi)p0(x^;β)p(yi|xi;w,b)=yip1(x^;β)+(1−yi)p0(x^;β)

=yieβTx^eβTx^+1+(1yi)1eβTx^+1=yieβTx^eβTx^+1+(1−yi)1eβTx^+1

=1+yieβTx^yieβTx^+1=1+yieβTx^−yieβTx^+1

对上式取对数
ln(1+yieβTx^yi)ln(eβTx^+1)ln(1+yieβTx^−yi)−ln(eβTx^+1)

因为yi{0,1}yi∈{0,1},所以上式的第一项要么为0,要么为βTx^βTx^,故上边的最大化式等价于下面这个最小化

(β)=i=1m(yiβTx^+ln(eβTx^+1))ℓ(β)=∑i=1m(−yiβTx^+ln(eβTx^+1))

利用经典的数值优化算法如梯度下降、牛顿法都可以得到上式最优解。

β=argminβl(β)β∗=arg⁡minβl(β)

线性判别分析(LDA)也称为Fisher判别分析

思想:给定训练样例集,设法将样例投影到一条直线上,使类内方差最小,类间方差最大,使分类效果最好。

这里写图片描述

给定数据集(xi,yi),i=1,2,m(xi,yi),i=1,2…,m,yi{0,1}yi∈{0,1},令Xi,μi,ΣiXi,μi,Σi分别表示第i{0,1}i∈{0,1}类示例的集合、均值向量、协方差矩阵。

则两类样本的中心在直线上的投影分别为:wTμ0wTμ0wTμ1wTμ1

两类样本的协方差分别为:wTΣ0wwTΣ0wwTΣ1wwTΣ1w

使同类样例投影点尽可能近,可以让同类样例投影点的协方差尽可能小,即wTΣ0w+wTΣ1wwTΣ0w+wTΣ1w尽可能小。

使异类样例的投影点尽可能远,可以让类中心之间的距离尽可能大,即||wTμ0wTμ1||2||wTμ0−wTμ1||2尽可能大。

所以我们的目标是最大化下式:

J=||wTμ0wTμ1||2wTΣ0w+wTΣ1wJ=||wTμ0−wTμ1||2wTΣ0w+wTΣ1w

=wT(μ0μ1)(μ0μ1)TwwT(Σ0+Σ1)w=wT(μ0−μ1)(μ0−μ1)TwwT(Σ0+Σ1)w

定义类内散度矩阵SwSw:

Sw=Σ0+Σ1=xX0(xμ0)(xμ0)T+xX1(xμ1)(xμ1)TSw=Σ0+Σ1=∑x∈X0(x−μ0)(x−μ0)T+∑x∈X1(x−μ1)(x−μ1)T

定义类间散度矩阵SbSb:
Sb=(μ0μ1)(μ0μ1)TSb=(μ0−μ1)(μ0−μ1)T

所以J可以重写为:
J==wTSbwwTSwwJ==wTSbwwTSww

这就是LDA要最大化的目标,即SbSbSwSw的广义瑞利商。
可以看到,上式分子分母都是w的二次项,所以解与w的长度无关,只与其方向有关,不失一般性,令wTSww=1wTSww=1,则上式等价于

minw wTSbws.t.    wTSww=1minw −wTSbws.t.    wTSww=1

由拉格朗日乘子法,上式等价于:

Sbw=λSwwSbw=λSww

Sbw=(μ0μ1)(μ0μ1)TwSbw=(μ0−μ1)(μ0−μ1)Tw,其中(μ0μ1)Tw(μ0−μ1)Tw是一个标量,所以SbwSbw的方向恒为μ0μ1μ0−μ1,故有:Sbw=λ(μ0μ1)Sbw=λ(μ0−μ1).

所以可以得到:w=S1w(μ0μ1)w=Sw−1(μ0−μ1)

当两类数据同先验,满足高斯分布且协方差相等时,LDA可以达到最优分类!

LDA推广到多分类任务中,emmmmm以后再看吧

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值