Time Limit: 2 second(s) | Memory Limit: 32 MB |
Factorial (阶层)of an integer is defined by the following function
f(0) = 1
f(n) = f(n - 1) * n, if(n> 0)
So, factorial of 5 is 120. But in different bases, the factorial may be different. For example, factorial of 5 in base 8 is 170.
In this problem, you have to find the number of digit(s) of the factorial of an integer in a certain base.
Input
Input starts with an integer T (≤ 50000), denoting the number of test cases.
Each case begins with two integers n (0 ≤ n ≤ 106) andbase (2 ≤ base ≤ 1000). Both of these integers will be given in decimal.
Output
For each case of input you have to print the case number and the digit(s) of factorial n in the given base.
Sample Input
5
5 10
8 10
22 3
1000000 2
0 100
Output for Sample Input
Case 1: 3
Case 2: 5
Case 3: 45
Case 4: 18488885
Case 5: 1
题意:N是十进制的数,求N!在K进制下的位数。N!在十进制下的位数就是 log10 ( N ! ) +1 ( 自己找个数验证 ) ,N!在K进制下的位数就是 logK( N ! ) +1 ( K 为底数 ),而计算机不能直接以K为底求对数。所以运用换底公式, logK( N ! ) = log( N! ) / log ( K) ,注意,等号右边的 log 都是默认以e为底。
计算N!在K进制下的位数,即计算 [ log(1)+log(2)+...+log(N) ]+1 其中log的底数都是K。
#include <stdio.h>
#include <math.h>
#include <string.h>
using namespace std;
double sum[1000008];
int main()
{
double res;
int T, n, a, i;
int num = 1;
memset(sum, 0, sizeof(sum));
for(i = 1; i < 1000008; i++)
sum[i] =sum[i-1]+log(i);
scanf("%d", &T);
while(T--)
{
scanf("%d %d", &n, &a);
if(n == 0) printf("Case %d: 1\n", num++);
else
{
res = sum[n];
res = res/log(a)+1;
printf("Case %d: %d\n", num++, (int)res);
}
}
return 0;
}