Description
You task is to find minimal natural number N, so that N! contains exactly Q zeroes on the trail in decimal notation. As you know N! = 1*2*...*N. For example, 5! = 120, 120 contains one zero on the trail.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case contains an integer Q (1 ≤ Q ≤ 108) in a line.
Output
For each case, print the case number and N. If no solution is found then print 'impossible'.
Sample Input
3
1
2
5
Sample Output
Case 1: 5
Case 2: 10
Case 3: impossible
二分法:
当数据量很大适宜采用该方法。采用二分法查找时,数据需是排好序的。 基本思想:假设数据是按升序排序的,对于给定值x,从序列的中间位置开始比较,如果当前位置值等于x,则查找成功;若x小于当前位置值,则在数列的前半段中查找;若x大于当前位置值则在数列的后半段中继续查找,直到找到为止。
数学知识:
找N!的末尾连续零的个数:
long long sum(long long x)
{
long long ans=0;
while(x>0)
{
ans=ans+x/5;
x=x/5;
}
return ans; //求N!末尾有几个连续的零
}
AC代码:
#include<stdio.h>
long long sum(long long x)
{
long long ans=0;
while(x>0)
{
ans=ans+x/5;
x=x/5;
}
return ans; //求N!末尾有几个连续的零
}
int main()
{
int k=1;
int T;
long long n;
scanf("%d",&T);
while(T--)
{
long long ans=0;
scanf("%lld",&n);
long long left=1;long long right=1000000000000; //尽量开大一些
while(right>=left)
{
long long mid=(left+right)/2;
if(sum(mid)==n)
{
ans=mid;
right=mid-1; //要找最小的
}
else if(n<sum(mid))
{
right=mid-1;
}
else
{
left=mid+1;
}
}
if(ans!=0)
{
printf("Case %d: %lld\n",k++,ans);
}
else
{
printf("Case %d: impossible\n",k++,ans);
}
}
return 0;
}
本文介绍了一个算法问题——如何找到使得N!在十进制表示中恰好有Q个尾随零的最小自然数N。文章通过示例说明了输入输出格式,并提供了一种使用二分查找的方法来解决这个问题,还给出了AC代码实现。
3539

被折叠的 条评论
为什么被折叠?



