| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 8638 | Accepted: 3627 |
Description
Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-a pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)
Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.
Input
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.
Output
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
Sample Input
3 2 10 3 341 2 341 3 1105 2 1105 3 0 0
Sample Output
no no yes no yes yes
Source
Waterloo Local Contest, 2007.9.23
#include<stdio.h>
#include<string.h>
bool sushu(long long n)
{
long long i;
for(i=2;i*i<n;++i)
{
if(n%i==0)
return false;
}
return true;
}
long long quictpow(long long n,long long m)
{
long long ans=1,cnt=m;
while(cnt>0)
{
if(cnt&1)
ans=(ans*n)%m;
n=(n*n)%m;
cnt=cnt/2;
}
return ans;
}
int main()
{
long long p,a;
while(scanf("%lld%lld",&p,&a)&&p||a)
{
if(sushu(p))
printf("no\n");
else if(a==quictpow(a,p))
printf("yes\n");
else if(a!=quictpow(a,p))
printf("no\n");
}
return 0;
}
本文介绍了一种用于判断特定条件下伪素数的算法,并通过快速幂运算实现对给定数值的有效验证。文中提供了完整的C++代码示例,涵盖质数检测、快速幂计算等关键步骤。
251

被折叠的 条评论
为什么被折叠?



