POJ-3641 Pseudoprime numbers

本文介绍了一种用于判断特定条件下伪素数的算法,并通过快速幂运算实现对给定数值的有效验证。文中提供了完整的C++代码示例,涵盖质数检测、快速幂计算等关键步骤。
Pseudoprime numbers
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 8638 Accepted: 3627

Description

Fermat's theorem states that for any prime number p and for any integer a > 1, ap = a (mod p). That is, if we raise a to the pth power and divide by p, the remainder is a. Some (but not very many) non-prime values of p, known as base-pseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for all a.)

Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or not p is a base-a pseudoprime.

Input

Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containing p and a.

Output

For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".

Sample Input

3 2
10 3
341 2
341 3
1105 2
1105 3
0 0

Sample Output

no
no
yes
no
yes
yes

Source

Waterloo Local Contest, 2007.9.23


#include<stdio.h>  
#include<string.h>   
bool sushu(long long n)  
{  
    long long  i;  
    for(i=2;i*i<n;++i)  
    {  
        if(n%i==0)  
            return false;  
    }  
    return true;  
}   
long long quictpow(long long n,long long m)  
{  
    long long ans=1,cnt=m;  
    while(cnt>0)  
    {  
        if(cnt&1)  
            ans=(ans*n)%m;    
        n=(n*n)%m; 
		cnt=cnt/2; 
    }  
    return ans;  
}   
int main()  
{  
    long long p,a;  
    while(scanf("%lld%lld",&p,&a)&&p||a)  
    {  
        if(sushu(p))  
            printf("no\n");  
        else if(a==quictpow(a,p))  
            printf("yes\n");  
        else if(a!=quictpow(a,p))  
            printf("no\n");  
    }  
    return 0;  
}  


评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值