TensorFlow基础:tf.nn.embedding_lookup()

TF.nn.embedding_lookup详解
本文详细解析了TensorFlow中tf.nn.embedding_lookup函数的使用方法,通过具体实例展示了如何利用该函数进行向量查找,适用于多ID形式的输入,是理解与运用TensorFlow嵌入层的重要参考资料。
部署运行你感兴趣的模型镜像

原型:tf.nn.embedding_lookup(params, ids, partition_strategy=‘mod’, name=None, validate_indices=True, max_norm=None)

匹配:多ids形式 idx2 = tf.Variable([[0, 2, 3, 1], [4, 0, 2, 2]], tf.int32)

import tensorflow as tf
import numpy as np

a = [[0.1, 0.2, 0.3], [1.1, 1.2, 1.3], [2.1, 2.2, 2.3], [3.1, 3.2, 3.3], [4.1, 4.2, 4.3]]
a = np.asarray(a)
idx1 = tf.Variable([0, 2, 3, 1], tf.int32)
idx2 = tf.Variable([[0, 2, 3, 1], [4, 0, 2, 2]], tf.int32)
out1 = tf.nn.embedding_lookup(a, idx1)
out2 = tf.nn.embedding_lookup(a, idx2)
init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    print sess.run(out1)
    print out1
    print '=================='
    print sess.run(out2)
    print out2

输出:

[[ 0.1  0.2  0.3]
 [ 2.1  2.2  2.3]
 [ 3.1  3.2  3.3]
 [ 1.1  1.2  1.3]]
Tensor("embedding_lookup:0", shape=(4, 3), dtype=float64)

[[[ 0.1  0.2  0.3]
  [ 2.1  2.2  2.3]
  [ 3.1  3.2  3.3]
  [ 1.1  1.2  1.3]]

 [[ 4.1  4.2  4.3]
  [ 0.1  0.2  0.3]
  [ 2.1  2.2  2.3]
  [ 2.1  2.2  2.3]]]
Tensor("embedding_lookup_1:0", shape=(2, 4, 3), dtype=float64)

详见:https://www.jianshu.com/p/ad88a0afa98f

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值