典型关联分析 CCA

典型关联分析(Canonical Correlation Analysis,以下简称CCA)是最常用的挖掘数据关联关系的算法之一。比如我们拿到两组数据,第一组是人身高和体重的数据,第二组是对应的跑步能力和跳远能力的数据。那么我们能不能说这两组数据是相关的呢?CCA可以帮助我们分析这个问题。

 

1. CCA概述

    在数理统计里面,我们都知道相关系数这个概念。假设有两组一维的数据集X和Y,则相关系数ρρ的定义为:

\rho(X,Y) = \frac{cov(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}

    其中cov(X,Y)是X和Y的协方差,而D(X), D(Y)分别是X和Y的方差。相关系数ρ的取值为[-1,1], ρ的绝对值越接近于1,则X和Y的线性相关性越高。越接近于0,则X和Y的线性相关性越低。

    虽然相关系数可以很好的帮我们分析一维数据的相关性,但是对于高维数据就不能直接使用了。拿上面我们提到的,如果X是包括人身高和体重两个维度的数据,而Y是包括跑步能力和跳远能力两个维度的数据,就不能直接使用相关系数的方法。那我们能不能变通一下呢?CCA给了我们变通的方法。

    CCA使用的方法是将多维的X和Y都用线性变换为1维的X'和Y',然后再使用相关系数来看X'和Y'的相关性。将数据从多维变到1位,也可以理解为CCA是在进行降维,将高维数据降到1维,然后再用相关系数进行相关性的分析。下面我们看看CCA的算法思想。

2. CCA的算法思想

    上面我们提到CCA是将高维的两组数据分别降维到1维,然后用相关系数分析相关性。但是有一个问题是,降维的标准是如何选择的呢?回想下主成分分析PCA,降维的原则是投影方差最大;再回想下线性判别分析LDA,降维的原则是同类的投影方差小,异类间的投影方差大。对于我们的CCA,它选择的投影标准是降维到1维后,两组数据的相关系数最大。

    现在我们具体来讨论下CCA的算法思想。假设我们的数据集是X和Y,X为n1×m的样本矩阵。Y为n2×m的样本矩阵.其中m为样本个数,而n1,n2分别为X和Y的特征维度。

    对于X矩阵,我们将其投影到1维,或者说进行线性表示,对应的投影向量或者说线性系数向量为aa, 对于Y矩阵,我们将其投影到1维,或者说进行线性表示,对应的投影向量或者说线性系数向量为bb, 这样X ,Y投影后得到的一维向量分别为X',Y'。我们有

X' = a^TX, Y'=b^TY

    我们CCA的优化目标是最大化\rho(X',Y')得到对应的投影向量a,b,即

\underbrace{arg\;max}_{a,b}\frac{cov(X',Y')}{\sqrt{D(X')}\sqrt{D(Y')}}

     在投影前,我们一般会把原始数据进行标准化,得到均值为0而方差为1的数据X和Y。这样我们有:

cov(X',Y') = cov(a^TX, b^TY) = E(<a^TX, b^TY>) = E((a^TX)(b^TY)^T) =a^TE(XY^T)b

D(X') = D(a^TX) = a^TE(XX^T)a

D(Y') = D(b^TY) = b^TE(YY^T)b

    由于我们的X,Y的均值均为0,则

D(X) = cov(X,X) = E(XX^T), D(Y)= cov(Y,Y) = E(YY^T)

cov(X,Y) = E(XY^T), cov(Y,X) = E(YX^T)

    令S_{XY} =cov(X,Y),则优化目标可以转化为:

\underbrace{arg\;max}_{a,b}\frac{a^TS_{XY}b}{\sqrt{ a^TS_{XX}a}\sqrt{b^TS_{YY}b}}

    由于分子分母增大相同的倍数,优化目标结果不变,我们可以采用和SVM类似的优化方法,固定分母,优化分子,具体的转化为:

\underbrace{arg\;max}_{a,b}\;\;{a^TS_{XY}b}

s.t. a^TS_{XX}a =1,\; b^TS_{YY}b =1

     也就是说,我们的CCA算法的目标最终转化为一个凸优化过程,只要我们求出了这个优化目标的最大值,就是我们前面提到的多维X和Y的相关性度量,而对应的a,ba,b则为降维时的投影向量,或者说线性系数。

    这个函数优化一般有两种方法,第一种是奇异值分解SVD,第二种是特征分解,两者得到的结果一样,下面我们分别讲解。

 

原文地址:https://www.cnblogs.com/pinard/p/6288716.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值