暑期项目实训日志6.29——学习知识汇聚平台设计与实现

今天上午开了个会,按每个人的意向投票分小组。分为四个小组,分别负责:管理和测试(3人),教师端(4人),学生端(4人),平台(4人)。并对每个小组内的成员进行了前后端的分工。我选择了管理和测试组,具体分工如下:
在这里插入图片描述
同组的成员还有刘大鹏和王宇。除上述工作外,我们三个人每个人负责一个小组,包括其整个流程的跟进和组间的协调。我负责的是学生组。分工之后讨论确定了基本需求,初步确定使用SpringBoot+Vue框架,学习组的后端同学主要还在学习过程中,整个前端已经讨论并基本确定了应有的几个页面和基本样式。
下午刘大鹏根据讨论结果画出了具体的需求流程图:
在这里插入图片描述
接下来我们组的任务就是撰写需求分析文档,已经开始着手了,计划两天内写完。
另外今早还安装了gitee并加入了创建的组织,因为昨晚讨论后对比GitHub,gitee的功能与其差不多,但是稳定性更好一些,决定使用gitee。

数据集介绍:淋巴细胞、中性粒细胞鳞状细胞癌检测数据集 一、基础信息 数据集名称:淋巴细胞、中性粒细胞鳞状细胞癌检测数据集 数据规模: - 训练集:5,205张医学图像 - 验证集:240张医学图像 - 测试集:220张医学图像 病理分类: - Lymphocytes(淋巴细胞):免疫系统核心细胞,参病毒防御肿瘤监控 - NE(中性粒细胞):急性炎症标志物,反映感染组织损伤 - SCC(鳞状细胞癌):常见上皮组织恶性肿瘤,需早期精准识别 标注规范: - YOLO格式标注,支持目标检测模型训练 - 包含多边形坐标标注,适配病理切片分析需求 二、核心应用 数字病理诊断系统: 支持开发白细胞亚型自动分类系统鳞癌检测算法,辅助显微镜图像分析,提升病理科工作效率。 血液病辅助诊断: 通过淋巴细胞/中性粒细胞比例分析,为白血病、淋巴瘤等血液疾病提供AI辅助判断依据。 癌症筛查研究: 包含鳞状细胞癌阳性样本,适用于皮肤癌、头颈癌等上皮源性肿瘤的早期筛查模型开发。 医学影像教学: 提供标注规范的病理图像数据,适用于医学院校的细胞形态学教学AI医疗交叉学科实训。 三、核心优势 临床病理学深度适配: 涵盖血液系统关键细胞类型高发癌症类别,标注经病理专家双重校验,确保医学准确性。 多场景检测能力: 同时支持血涂片细胞分类组织切片癌变区域检测,满足复合型医疗AI产品开发需求。 数据分布专业化: 按医学研究标准划分训练集/验证集/测试集,包含典型病例边缘案例,强化模型鲁棒性。 跨任务兼容性: YOLO标注格式可直接用于目标检测训练,同时支持转换为分类、实例分割等扩展任务。
数据集介绍:自动驾驶交通障碍物目标检测数据集 一、基础信息 数据集名称:自动驾驶交通障碍物目标检测数据集 数据规模: - 训练集:10,627张图片 - 验证集:1,298张图片 - 测试集:1,272张图片 分类类别: - Car(汽车):道路主要交通工具,包含多种车型 - Motorbike(摩托车):两轮机动车辆及骑行者 - Person(行人):道路行人及动态行为 - Pole(杆状物):路灯杆、交通标志杆等垂直障碍物 - Reflective_cone(反光锥):道路施工警示标识 - Truck(卡车):大型货运车辆及特殊运输车 标注格式: YOLO格式标注,包含边界框坐标类别编码,适配YOLOv3/v5/v8等主流检测框架 二、适用场景 自动驾驶感知系统开发: 训练车载摄像头实时识别道路障碍物,支持ADAS系统进行碰撞预警和路径规划 交通监控系统优化: 提升电子警察系统对复杂交通元素的识别准确率,支持违章行为分析 机器人视觉导航: 为服务机器人/AGV提供室外环境感知能力,实现动态障碍物避让 学术研究应用: 支持多目标检测算法研究,包含小目标(反光锥)大尺度目标(卡车)的检测优化 三、数据集优势 场景适配性强: 覆盖6类道路核心障碍物,包含静态设施(杆状物)动态目标(行人、车辆)的多样化组合 标注专业化: 采用YOLO工业标准标注规范,坐标精度达小数点后6位,支持像素级检测需求 数据分布均衡: 万级训练样本量配合科学划分的验证/测试集,满足模型开发全流程需求 跨模型兼容性: 原生支持YOLO系列算法,可快速迁移至Faster R-CNN、RetinaNet等检测框架
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值