STM32F4 UART1 DMA发送和接收不定长度数据

本文详细介绍了如何在STM32F4微控制器上使用DMA进行串口数据发送与接收,特别是针对接收时无法预估数据长度的问题,提出了使用UART空闲中断来辅助判断数据接收完成的方法。通过配置DMA与中断,实现了灵活的数据传输与高效的数据处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

STM32F4 串口收发使用DMA还是很方便的。但是配置DMA时需要配置数据长度,这一点对于发送来说可以预估计自己发送的长度来配置DMA发送数据长度,但是对于接收不是很好解决,因为如果使用DMA接收中断是要配置的数据长度减到0才能出发中断。但是我们无法判断接受数据的长度,导致无法判断数据接收完成。网上有提出的解决方法是用定时器固定周期的读DMA接收的长度来判断是否接收完成,也有使用UART的空闲中断来处理的。在这里我使用UART的空闲中断来处理接收不定长数据。当然也要打开DMA接收完成中断,处理数据接收超过DMA配置的长度导致的DMA接收中断。

1.使用DMA发送时每次发送数据前需要配置发送的数据长度,此时要注意应先关闭DMA,然后配置数据长度,最后开启DMA发送,同时在DMA发送中断里面不要忘记清除相应的中断标志位。

2.DMA接收长度达到配置长度后会导致接收中断,此时在中断处理函数内要先关闭DMA,然后读出数据长度,清掉相应的中断标志位,最后重新配置DMA接收长度并打开DMA接收。在这里的DMA中断指示为了防护一次性接收数据超过DMA配置长度。

3.UART空闲中断,利用空闲中断可以很好地判断DMA接收不定长度的数据是否完成。初始化UART时打开空闲中断。当数据接收完成后会触发UART空闲中断。在中断内首先关闭DMA,读出DMA接收到的数据长度,清除DMA标志,重新配置DMA接收长度,清除空闲中断标志IDLE。这里要注意清除IDLE要由软件序列清除即依次读取USART1->SR;和USART1->DR;

下面贴出代码方便以后查看

u8  ReceiveBuff[RECEIVE_BUF_SIZE];   //接收缓冲
u8  SendBuff[SEND_BUF_SIZE];	//发送数据缓冲区

u16 UART1_ReceiveSize = 0;

//初始化IO 串口1 
//bound:波特率
void uart_init(u32 bound)
{
	//GPIO端口设置
	GPIO_InitTypeDef GPIO_InitStructure;
	USART_InitTypeDef USART_InitStructure;
	NVIC_InitTypeDef NVIC_InitStructure;
	DMA_InitTypeDef  DMA_InitStructure;

	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA,ENABLE); //使能GPIOA时钟
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1,ENABLE);//使能USART1时钟
	RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2,ENABLE);//DMA2时钟使能 

	//串口1对应引脚复用映射
	GPIO_PinAFConfig(GPIOA,GPIO_PinSource9,GPIO_AF_USART1); //GPIOA9复用为USART1
	GPIO_PinAFConfig(GPIOA,GPIO_PinSource10,GPIO_AF_USART1); //GPIOA10复用为USART1

	//USART1端口配置
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_10; //GPIOA9与GPIOA10
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;//复用功能
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;	//速度50MHz
	GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; //推挽复用输出
	GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP; //上拉
	GPIO_Init(GPIOA,&GPIO_InitStructure); //初始化PA9,PA10

	//USART1 初始化设置
	USART_InitStructure.USART_BaudRate = bound;//波特率设置
	USART_InitStructure.USART_WordLength = USART_WordLength_8b;//字长为8位数据格式
	USART_InitStructure.USART_StopBits = USART_StopBits_1;//一个停止位
	USART_InitStructure.USART_Parity = USART_Parity_No;//无奇偶校验位
	USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;//无硬件数据流控制
	USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;	//收发模式
	USART_Init(USART1, &USART_InitStructure); //初始化串口1

	USART_Cmd(USART1, ENABLE);  //使能串口1 

	//USART_ClearFlag(USART1, USART_FLAG_TC);
	
	USART_ITConfig(USART1, USART_IT_IDLE, ENABLE);//开启相关中断

	//Usart1 NVIC 配置
	NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;//串口1中断通道
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=3;//抢占优先级3
	NVIC_InitStructure.NVIC_IRQChannelSubPriority =3;		//子优先级3
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;			//IRQ通道使能
	NVIC_Init(&NVIC_InitStructure);	//根据指定的参数初始化VIC寄存器、

	USART_DMACmd(USART1,USART_DMAReq_Tx,ENABLE);  //使能串口1的DMA发送   
	USART_DMACmd(USART1,USART_DMAReq_Rx,ENABLE);  //使能串口1的DMA接收


	//****************************配置UART1发送
	DMA_DeInit(DMA2_Stream7);
	while (DMA_GetCmdStatus(DMA2_Stream7) != DISABLE);//等待DMA可配置 
	/* 配置 DMA Stream */
	DMA_InitStructure.DMA_Channel = DMA_Channel_4;  //通道选择
	DMA_InitStructure.DMA_PeripheralBaseAddr = (u32)&USART1->DR;//DMA外设地址
	DMA_InitStructure.DMA_Memory0BaseAddr = (u32)SendBuff;//DMA 存储器0地址
	DMA_InitStructure.DMA_DIR = DMA_DIR_MemoryToPeripheral;//存储器到外设模式
	DMA_InitStructure.DMA_BufferSize = SEND_BUF_SIZE;//数据传输量 
	DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;//外设非增量模式
	DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;//存储器增量模式
	DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;//外设数据长度:8位
	DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;//存储器数据长度:8位
	DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;// 使用普通模式 
	DMA_InitStructure.DMA_Priority = DMA_Priority_Medium;//中等优先级
	DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable;         
	DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_Full;
	DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single;//存储器突发单次传输
	DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;//外设突发单次传输
	DMA_Init(DMA2_Stream7, &DMA_InitStructure);//初始化DMA Stream
	//DMA NVIC  
	NVIC_InitStructure.NVIC_IRQChannel = DMA2_Stream7_IRQn;  
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;  
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;  
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;  
	NVIC_Init(&NVIC_InitStructure);  
	DMA_ITConfig(DMA2_Stream7,DMA_IT_TC,ENABLE);

	//****************************配置UART1接收
	DMA_DeInit(DMA2_Stream5);
	while (DMA_GetCmdStatus(DMA2_Stream5) != DISABLE);//等待DMA可配置 
	/* 配置 DMA Stream */
	DMA_InitStructure.DMA_Channel = DMA_Channel_4;  //通道选择
	DMA_InitStructure.DMA_PeripheralBaseAddr = (u32)&USART1->DR;//DMA外设地址
	DMA_InitStructure.DMA_Memory0BaseAddr = (u32)ReceiveBuff;//DMA 存储器0地址
	DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralToMemory ;//外设到存储器模式
	DMA_InitStructure.DMA_BufferSize = RECEIVE_BUF_SIZE;//数据传输量 
	DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;//外设非增量模式
	DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;//存储器增量模式
	DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;//外设数据长度:8位
	DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;//存储器数据长度:8位
	DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;// 使用普通模式 
	DMA_InitStructure.DMA_Priority = DMA_Priority_Medium;//中等优先级
	DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable;         
	DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_Full;
	DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single;//存储器突发单次传输
	DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;//外设突发单次传输
	DMA_Init(DMA2_Stream5, &DMA_InitStructure);//初始化DMA Stream
	//DMA NVIC  
	NVIC_InitStructure.NVIC_IRQChannel = DMA2_Stream5_IRQn;  
	NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;  
	NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1;  
	NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;  
	NVIC_Init(&NVIC_InitStructure);  
	DMA_Cmd(DMA2_Stream5, ENABLE);  //开启DMA传输 
	
	DMA_ITConfig(DMA2_Stream5,DMA_IT_TC,ENABLE);
	
}

//开启一次DMA传输
//DMA_Streamx:DMA数据流,DMA1_Stream0~7/DMA2_Stream0~7 
//ndtr:数据传输量  
void DmaSendDataProc(DMA_Stream_TypeDef *DMA_Streamx,u16 ndtr)
{
 
	DMA_Cmd(DMA_Streamx, DISABLE);                      //关闭DMA传输 
	
	while (DMA_GetCmdStatus(DMA_Streamx) != DISABLE){}	//确保DMA可以被设置  
		
	DMA_SetCurrDataCounter(DMA_Streamx,ndtr);          //数据传输量  
 
	DMA_Cmd(DMA_Streamx, ENABLE);                      //开启DMA传输 
}	  

///////////////////////////////////////////////////////////////////////////
//串口1
//发送单字节
 void SendByteInfoProc(u8 nSendInfo)
{
	u8 *pBuf = NULL;
	//指向发送缓冲区
	pBuf = SendBuff;
	*pBuf++ = nSendInfo;

	DmaSendDataProc(DMA2_Stream7,1); //开始一次DMA传输!	  
}
//发送多字节
void SendBytesInfoProc(u8* pSendInfo, u16 nSendCount)
{
	u16 i = 0;
	u8 *pBuf = NULL;
	//指向发送缓冲区
	pBuf = SendBuff;

	for (i=0; i<nSendCount; i++)
	{
		*pBuf++ = pSendInfo[i];
	}
	//DMA发送方式
	DmaSendDataProc(DMA2_Stream7,nSendCount); //开始一次DMA传输!	  
}

//发送完成中断
void DMA2_Stream7_IRQHandler(void)
{
	//清除标志
	if(DMA_GetFlagStatus(DMA2_Stream7,DMA_FLAG_TCIF7)!=RESET)//等待DMA2_Steam7传输完成
	{ 
		DMA_ClearFlag(DMA2_Stream7,DMA_FLAG_TCIF7);//清除DMA2_Steam7传输完成标志
	}
}
//接收完成中断
void DMA2_Stream5_IRQHandler(void)
{
	//清除标志
	if(DMA_GetFlagStatus(DMA2_Stream5,DMA_FLAG_TCIF5)!=RESET)//等待DMA2_Steam7传输完成
	{ 
		DMA_Cmd(DMA2_Stream5, DISABLE); //关闭DMA,防止处理其间有数据

		UART1_ReceiveSize =RECEIVE_BUF_SIZE - DMA_GetCurrDataCounter(DMA2_Stream5);
		if(UART1_ReceiveSize !=0)
		{
			OSSemPost(DMAReceiveSize_Sem);
		}
		
		DMA_ClearFlag(DMA2_Stream5,DMA_FLAG_TCIF5 | DMA_FLAG_FEIF5 | DMA_FLAG_DMEIF5 | DMA_FLAG_TEIF5 | DMA_FLAG_HTIF5);//清除DMA2_Steam7传输完成标志
		DMA_SetCurrDataCounter(DMA2_Stream5, RECEIVE_BUF_SIZE);
		DMA_Cmd(DMA2_Stream5, ENABLE);     //打开DMA,
	}
}

//空闲中断
void USART1_IRQHandler(void)
{
	u16 data;
	if(USART_GetITStatus(USART1,USART_IT_IDLE) != RESET)
	{
		DMA_Cmd(DMA2_Stream5, DISABLE); //关闭DMA,防止处理其间有数据

		data = USART1->SR;
		data = USART1->DR;
		
		UART1_ReceiveSize =RECEIVE_BUF_SIZE - DMA_GetCurrDataCounter(DMA2_Stream5);
		if(UART1_ReceiveSize !=0)
		{
			OSSemPost(DMAReceiveSize_Sem);
		}
		DMA_ClearFlag(DMA2_Stream5,DMA_FLAG_TCIF5 | DMA_FLAG_FEIF5 | DMA_FLAG_DMEIF5 | DMA_FLAG_TEIF5 | DMA_FLAG_HTIF5);//清除DMA2_Steam7传输完成标志
		DMA_SetCurrDataCounter(DMA2_Stream5, RECEIVE_BUF_SIZE);
		DMA_Cmd(DMA2_Stream5, ENABLE);     //打开DMA,

	}
} 

http://shop122177833.taobao.com/

### STM32F4 串口接收实现方法及代码示例 STM32F4系列微控制器的串口接收功能可以通过轮询或中断方式实现。以下详细介绍两种实现方法,并提供相应的代码示例。 #### 中断方式实现串口接收 在中断方式下,当串口接收数据时会触发中断,进入中断服务函数完成数据处理。这种方法可以减少CPU占用率,适合需要实时响应的应用场景。以下是基于引用内容的代码示例[^2]: ```c uint8_t Serial_RxData; // 接收到的数据 uint8_t Serial_RxFlag; // 接收数据的标志位 // 获取接收标志位 uint8_t Serial_GetRxFlag(void) { if (Serial_RxFlag == 1) { Serial_RxFlag = 0; return 1; } return 0; } // 获取接收到的数据 uint8_t Serial_GetRxData(void) { return Serial_RxData; } // USART1中断服务函数 void USART1_IRQHandler(void) { if (USART_GetITStatus(USART1, USART_IT_RXNE) == SET) { // 检查是否为接收中断 Serial_RxData = USART_ReceiveData(USART1); // 读取接收到的数据 Serial_RxFlag = 1; // 设置接收标志位 USART_ClearITPendingBit(USART1, USART_IT_RXNE); // 清除中断标志位 } } // 主程序中调用 if (Serial_GetRxFlag() == 1) { uint8_t RxData = Serial_GetRxData(); // 获取接收到的数据 Serial_SendByte(RxData); // 发送接收到的数据(回显) } ``` #### 轮询方式实现串口接收 轮询方式通过不断检查串口状态寄存器中的接收标志位来判断是否有数据到达。这种方式简单易懂,但CPU占用率较高,适合对实时性要求不高的应用场景。以下是基于引用内容的代码示例[^3]: ```c // 发送数据函数 void USART3_Send_Data(uint8_t *buf, uint16_t len) { uint16_t t; for (t = 0; t < len; t++) { // 循环发送数据 while (USART_GetFlagStatus(USART3, USART_FLAG_TC) == RESET); // 等待发送完成 USART_SendData(USART3, buf[t]); // 发送数据 } while (USART_GetFlagStatus(USART3, USART_FLAG_TC) == RESET); // 确保所有数据发送完毕 } // 轮询接收数据 uint8_t USART3_Receive_Data(void) { while (USART_GetFlagStatus(USART3, USART_FLAG_RXNE) == RESET); // 等待接收缓冲区非空 return USART_ReceiveData(USART3); // 返回接收到的数据 } // 主程序中调用 uint8_t RxData = USART3_Receive_Data(); // 调用接收函数 USART3_Send_Data(&RxData, 1); // 发送接收到的数据(回显) ``` #### 注意事项 1. 在使用中断方式时,需确保正确配置了中断优先级使能了相关中断。 2. 在使用轮询方式时,应避免阻塞主程序,尤其是在多任务环境下。 3. 数据接收完成后,通常需要对接收到的数据进行进一步处理,例如解析协议或存储到缓冲区中以供后续使用[^1]。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值