对DataFrame中的数据进行按区间切分进行分组

本文介绍如何使用Pandas库中的cut函数实现数据离散化,通过设定切分区域和对应标签,将连续型数据转换为类别型数据,适用于数据分析预处理阶段。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import pandas as pd

#设置切分区域
listBins = [0, 10, 20, 30, 40, 50, 60, 1000000]

#设置切分后对应标签
listLabels = ['0_10','11_20','21_30','31_40','41_50','51_60','61及以上']

#利用pd.cut进行数据离散化切分
"""
pandas.cut(x,bins,right=True,labels=None,retbins=False,precision=3,include_lowest=False)
x:需要切分的数据
bins:切分区域
right : 是否包含右端点默认True,包含
labels:对应标签,用标记来代替返回的bins,若不在该序列中,则返回NaN
retbins:是否返回间距bins
precision:精度
include_lowest:是否包含左端点,默认False,不包含
"""
df['fenzu'] = pd.cut(df['data'], bins=listBins, labels=listLabels, include_lowest=True)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值