God Save the i-th Queen

本文探讨了在给定尺寸的棋盘上,已有若干皇后放置的情况下,如何计算还能放置皇后的空位数量。通过标记已占据的位置及受攻击威胁的行列和对角线,采用双层循环遍历的方法高效解决问题。

God Save the i-th Queen

Time Limit: 5000ms
Memory Limit: 65536KB
64-bit integer IO format:  %lld      Java class name:  Main
Did you know that during the ACM-ICPC World Finals a big chessboard is installed every year and is available for the participants to play against each other? In this problem, we will test your basic chess-playing abilities to verify that you would not make a fool of yourself if you advance to the World Finals.
During the yesterday’s Practice Session, you tried to solve the problem of N independent rooks. This time, let’s concentrate on queens. As you probably know, the queens may move not only
horizontally and vertically, but also diagonally.
You are given a chessboard with i−1 queens already placed and your task is to find all squares that may be used to place the i-th queen such that it cannot be captured by any of the others.

Input

The input consists of several tasks. Each task begins with a line containing three integer numbers separated by a space:  XNXand  give the chessboard size, 1  ≤ X, Y 20 000.  i−1 is the number of queens already placed, 0  ≤ ≤ X·Y .
After the first line, there are  lines, each containing two numbers  xk, yk separated by a space. They give the position of the  k-th queen, 1  ≤ xk ≤ X, 1  ≤ yk ≤ . You may assume that those positions are distinct, i.e., no two queens share the same square.
The last task is followed by a line containing three zeros.

Output

For each task, output one line containing a single integer number: the number of squares which are not occupied and do not lie on the same row, column, or diagonal as any of the existing queens.

Sample Input

8 8 2
4 5
5 5
0 0 0

Sample Output

20
题意:给出X*Y的棋盘,给出n个皇后 求在棋盘上还有多少位置可以放置皇后;

分析:标记被占据位置的横行 纵行,正副对角线对应的位置,for循环一次找出未被标记的点,(被标记的点可能被多次标记过,不容易计算 计算未被标记的更方便)

code:

#include<iostream>
#include<algorithm>
#include<stdio.h>
#include<string.h>
#include<math.h>
using namespace std; 
int c[31000],l[31000],fd[81000],zd[81000];
int main()
{
    int i,j,xt,yt,X,Y,N;
    long long ans;
    while(scanf("%d%d%d",&X,&Y,&N))
    {
        if(X==0&&Y==0&&N==0)
            break;
        memset(c,0,sizeof(c));
        memset(l,0,sizeof(l));
        memset(fd,0,sizeof(fd));
        memset(zd,0,sizeof(zd));
        for(i=0;i<N;i++)
        {
            scanf("%d%d",&xt,&yt);
            c[xt]=1;
            l[yt]=1;
            fd[xt+yt]=1;
            zd[xt+Y-yt]=1;
        }
        ans=0;
        for(i=1;i<=X;i++)
            for(j=1;j<=Y;j++)
            {
                if(!c[i] && !l[j] && !fd[i+j] && !zd[i+Y-j])
                ans++;
            }
        cout<<ans<<endl;
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值