最小路径覆盖

在一个PXP的有向图中, 路径覆盖 就是在图中找一些路经,使之覆盖了图中的所有顶点,且任何一个顶点有且只有一条路径与之关联;(如果把这些路径中的每条路径从它的起始点走到它的终点,那么恰好可以经过图中的每个顶点一次且仅一次);如果不考虑图中存在回路,那么每每条路径就是一个弱连通子集.

由上面可以得出:

1.一个单独的顶点是一条路径;

2.如果存在一路径p1,p2,......pk,其中p1 为起点,pk为终点,那么在覆盖图中,顶点p1,p2,......pk不再与其它的顶点之间存在有向边.

最小路径覆盖 就是找出最小的路径条数,使之成为P的一个路径覆盖.

路径覆盖与二分图匹配的关系:

最小路径覆盖=|P|-最大匹配数;

其中最大匹配数的求法是把P中的每个顶点pi分成两个顶点pi'与pi'',如果在p中存在一条pi到pj的边,那么在二分图P'中就有一条连接pi'与pj''的无向边;这里pi' 就是p中pi的出边,pj''就是p中pj 的一条入边;

对于公式:最小路径覆盖=|P|-最大匹配数 ;可以这么来理解;

如果匹配数为零,那么P中不存在有向边,于是显然有:

最小路径覆盖=|P|-最大匹配数=|P|-0=|P|;即P的最小路径覆盖数为|P|;

P'中不在于匹配边时,路径覆盖数为|P|;

如果在P'中增加一条匹配边pi'-->pj'',那么在图P的路径覆盖中就存在一条由pi连接pj的边,也就是说pi与pj 在一条路径上,于是路径覆盖数就可以减少一个;

如此继续增加匹配边,每增加一条,路径覆盖数就减少一条;直到匹配边不能继续增加时,路径覆盖数也不能再减少了,此时就有了前面的公式;但是这里只是说话了每条匹配边对应于路径覆盖中的一条路径上的一条连接两个点之间的有向边;下面来说明一个路径覆盖中的每条连接两个顶点之间的有向边对应于一条匹配边;

与前面类似,对于路径覆盖中的每条连接两个顶点之间的每条有向边pi--->pj,我们可以在匹配图中对应做一条连接pi'与pj''的边,显然这样做出来图的是一个匹配图(这一点用反证法很容易证明,如果得到的图不是一个匹配图,那么这个图中必定存在这样两条边   pi'---pj'' 及 pi' ----pk'',(j!=k),那么在路径覆盖图中就存在了两条 边pi-->pj, pi--->pk ,那边从pi出发的路径就不止一条了,这与路径覆盖图是矛盾的;还有另外一种情况就是存在pi'---pj'',pk'---pj'',这种情况也类似可证);

至此,就说明了匹配边与路径覆盖图中连接两顶点之间边的一一对应关系,那么也就说明了前面的公式成立!

六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)内容概要:本文档围绕六自由度机械臂的ANN人工神经网络设计展开,详细介绍了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程的理论与Matlab代码实现过程。文档还涵盖了PINN物理信息神经网络在微分方程求解、主动噪声控制、天线分析、电动汽车调度、储能优化等多个工程与科研领域的应用案例,并提供了丰富的Matlab/Simulink仿真资源和技术支持方向,体现了其在多学科交叉仿真与优化中的综合性价值。; 适合人群:具备一定Matlab编程基础,从事机器人控制、自动化、智能制造、电力系统或相关工程领域研究的科研人员、研究生及工程师。; 使用场景及目标:①掌握六自由度机械臂的运动学与动力学建模方法;②学习人工神经网络在复杂非线性系统控制中的应用;③借助Matlab实现动力学方程推导与仿真验证;④拓展至路径规划、优化调度、信号处理等相关课题的研究与复现。; 阅读建议:建议按目录顺序系统学习,重点关注机械臂建模与神经网络控制部分的代码实现,结合提供的网盘资源进行实践操作,并参考文中列举的优化算法与仿真方法拓展自身研究思路。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值