直方图反向投影,物体追踪,找出种子图片色彩空间对应的物体
读入图像——转HSV空间——计算sample直方图——归一化——计算反射投影
import cv2 as cv
from matplotlib import pyplot as plt
import numpy as np
#直方图反向投影,物体追踪,找出种子图片色彩空间对应的物体
#读入图像——转HSV空间——计算sample直方图——归一化——计算反射投影
def back_projection_demo():
sample=cv.imread("D:/Study/opencv/code/4.png")
target=cv.imread("D:/Study/opencv/code/3.png")
roi_hsv=cv.cvtColor(sample,cv.COLOR_BGR2HSV)
target_hsv=cv.cvtColor(target,cv.COLOR_BGR2HSV)
#calcHist(src,chanel,none,[bsize],[区间])
roiHist=cv.calcHist([roi_hsv],[0,1],None,[12,24],[0,180,0,256])
cv.normalize(roiHist,roiHist,0,255,cv.NORM_MINMAX)#归一化
dst=cv.calcBackProject([target_hsv],[0,1],roiHist,[0,180,0,256],1)
cv.imshow('sample',roi_hsv)
cv.imshow('target_hsv',target_hsv)
cv.imshow('back_projection_demo',dst)
def hist2d_demo(image):
hsv=cv.cvtColor(image,cv.COLOR_BGR2HSV)
hist=cv.calcHist([hsv],[0,1],None,[32,32],[0,180,0,256])
plt.imshow(hist,interpolation='nearest')
plt.title('2D Histogram')
plt.show()
src=cv.imread("D:/Study/opencv/code/1.jpg")
cv.imshow('src',src)
hist2d_demo(src)
back_projection_demo()
cv.waitKey(0)
cv.destroyAllWindows()