[leetcode] Longest Valid Parentheses

本文详细介绍了解决长有效括号子串问题的三种算法:使用栈和flag数组的方法、使用栈记录长度的方法以及动态规划(DP)方法。每种方法都附有代码实现,旨在帮助读者理解不同策略的实现细节与效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from : https://leetcode.com/problems/longest-valid-parentheses/

Given a string containing just the characters '(' and ')', find the length of the longest valid (well-formed) parentheses substring.

For "(()", the longest valid parentheses substring is "()", which has length = 2.

Another example is ")()())", where the longest valid parentheses substring is "()()", which has length = 4.

思路1:

使用栈和flag数组,每次匹配出栈的时候,将对应的flag位置记录为true。最后在flag中找出最长连续的为true的一段即可。

public class Solution {
    public int longestValidParentheses(String s) {
        int len = s.length();
        if(0 == len || "".equals(s)) return 0;
        Stack<Integer> idxes = new Stack<Integer>();
        boolean flag[] = new boolean[len];
        
        for(int i=0; i<len; ++i) {
            char c = s.charAt(i);
            if(idxes.empty() || '(' == c) {
                idxes.push(i);
            } else if(')' == c) {
                if('(' == s.charAt(idxes.peek())) {
                    flag[i] = flag[idxes.pop()] = true;
                } else {
                    idxes.push(i);
                }
            }
        }
        int max = 0;
        for(int i=0; i<len; ++i) {
            if(flag[i]) {
                int j = i;
                while(i<len && flag[i]) {
                    ++i;
                }
                if(i-j > max) {
                    max = i-j;
                }
            }
        }
        return max;
    }
}

思路2:

用栈,下标本身可以记录长度。

class Solution {
public:
    int longestValidParentheses(string s) {
        int len = s.size(), longest = 0;
        if(0 == len) return 0;
        stack<int> idxes;
        
        for(int i=0; i<len; ++i) {
            char c = s[i];
            if(idxes.empty() || '(' == c) idxes.push(i);
            else if(')' == c) {
                if('(' == s[idxes.top()]) {
                    idxes.pop();
					longest = max(idxes.empty()?i+1:i - idxes.top(), longest);
                } else {
                    idxes.push(i);
                }
            }
        }
   
        return longest;
    }
};

思路3:

DP。

数组dp[i]表示s中从i开始到最后,可以匹配的最长的括号个数。那么,i+dp[i](如果比s.size())就是下一个没有被匹配到的括号。倒着进行dp。

初始值:

dp[n-1] = 0;

递推关系:

如果s[i] == ')', 不可能从它开始有匹配的字符串,故不处理。

如果s[i]=='(',那么找到下一个没有被匹配的位置,j=i+1+dp[i+1],如果这个位置为')',正好匹配一对,那么dp[i] = dp[i+1]+2,且如果下一个位置j的下一个位置(如果j+1<n),那么可以将从i~j和j+1到j+dp[j+1]-1折两段连起来;

class Solution {
public:
    int longestValidParentheses(string s) {
        int len = s.size(), max = 0;
        int *fd = new int[len];
        for(int i=0; i<len; ++i) {
            fd[i] = 0;
        }
        for(int i=len-2; i>=0; --i) {
            if(s[i]=='(') {
                // find indice that i should match
                int j = i+1+fd[i+1];
                if(j < len && s[j] == ')') {
                    fd[i] = fd[i+1]+2;
                    if(j+1 < len && fd[j+1] > 0) {
                        fd[i] += fd[j+1];
                    }
                    if(fd[i] > max) {
                        max = fd[i];
                    }
                }
            }
        }
        delete[] fd;
        return max;
        
    }
};

public class Solution {
    public int longestValidParentheses(String s) {
        int len = s.length(), max = 0;
        int[] fd = new int[len];
        for(int i=len-2; i>=0; --i) {
            if(s.charAt(i)=='(') {
                // find indice that i should match
                int j = i+1+fd[i+1];
                if(j < len && s.charAt(j)==')') {
                    fd[i] = fd[i+1]+2;
                    if(j+1 < len && fd[j+1] > 0) {
                        fd[i] += fd[j+1];
                    }
                    if(fd[i] > max) {
                        max = fd[i];
                    }
                }
            }
            
        }
        return max;
    }
}


该合成数据集模拟了世界领先的运动服装和鞋类品牌之一耐克的零售和在线销售交易。它故意填充了凌乱、未清理的记录,以复制真实世界的业务数据,非常适合练习数据清理、探索性数据分析 (EDA) 以及构建仪表板或项目组合项目。 有什么超过 2,500 条交易记录,包含: 多个产品线(跑步、篮球、生活方式、训练、足球) 特定性别的销售(男性、女性、儿童) 零售店和在线渠道的销售额 常见的数据问题,例如:空值、地区拼写错误、错误的数据类型、数值列中的负值、日期格式不一致(例如,2023/07/21、21-07-2023 等)、折扣> 100%。 列描述 Order_ID ----交易/订单 ID(一些重复条目) Gender_Category------- 买家细分:男士、女士或儿童 Product_Line------ 商品类型:跑步、篮球等 Product_Name -------售出的特定商品(例如,Air Force 1、Pegasus Turbo) 尺寸-----商品尺寸(例如 7、M、L - 包括缺失/不一致) Units_Sold-------- 销售数量(可以是负数或空数) 建议零售价---------- 最高零售价(有些为零或零) Discount_Applied------ 销售折扣(有些超过 100%) 收入-------折扣后的最终金额(有些计算错误) Order_Date --------交易日期(多种格式和空) Sales_Channel -----------在线或零售 区域-------------印度城市(包括“德里”、“孟加罗尔”等拼写错误) 利润 --------------赚取的利润(可能是不切实际的或负的)
内容概要:本文详细介绍了果蔬采摘机器人末端执行器的柔顺抓取力控制方法,特别是基于广义比例积分(GPI)的力矩控制技术。文章首先概述了该方法的核心原理,即通过建模电机驱动的末端执行器,推导出电机输入电压与负载力矩的关系,并利用积分重构器设计GPI力矩反馈控制器,将力偏差转化为电机输入电压控制。相比传统PI控制,GPI方法无需对力矩跟踪误差求导,避免了系统延时和噪声问题。文章还提供了详细的Python代码实现,包括系统建模、GPI控制器设计、仿真比较和性能指标计算。实验结果表明,GPI控制方法在力矩跟踪误差、采摘完好率等方面表现出显著优势。 适合人群:具备一定编程基础,尤其是对机器人控制、自动化和机电一体化领域有兴趣的研发人员和技术爱好者。 使用场景及目标:①适用于果蔬采摘机器人或其他需要柔顺力控制的机器人应用;②通过仿真和实物实验,验证GPI控制在力矩跟踪、控制平稳性和采摘完好率等方面的优势;③帮助研究人员理解GPI控制器的设计原理及其相对于传统PI控制的改进之处。 其他说明:文章不仅提供了完整的理论推导和代码实现,还深入探讨了GPI控制器的关键技术和工程实现细节,如积分重构技术、四阶误差动态补偿、极点配置方法等。此外,文中还包含了实物实验结果统计和性能对比分析,进一步验证了GPI控制的实际应用价值。对于希望深入了解果蔬采摘机器人末端执行器控制技术的研究人员来说,这是一份非常有价值的参考资料。
内容概要:本文深入研究了在紧急订购产能不确定性和风险厌恶情况下的报童库存决策问题。论文采用CVaR(条件风险价值)和Mean-CVaR(均值-条件风险价值)两种风险度量方法,分析了单一随机紧急订购源和双紧急订购源(一个随机产能、一个无限产能)情形下的最优订购决策。研究发现,对于风险厌恶的报童,提高销售价格会减少其订购量,这与风险中性报童的行为不同。论文给出了最优订购量满足的方程组,分析了系统参数的影响,并通过数值模拟验证了结论。此外,文章还实现了多种风险度量方法的模型,如均值-方差模型和期望效用模型,并进行了参数敏感性分析,验证了不同风险度量方法对最优订购量的影响。 适合人群:对供应链管理、库存控制及风险管理感兴趣的学者、研究生以及从事相关领域的研究人员和从业者。 使用场景及目标:①理解和应用CVaR和Mean-CVaR两种风险度量方法在库存决策中的具体实现;②探讨不同风险度量方法(如均值-方差、期望效用)在报童问题中的表现;③分析风险厌恶程度、销售价格、紧急订购成本等因素对最优订购量的影响;④通过数值实验和敏感性分析,验证论文中的理论结论并提供决策支持。 其他说明:本文不仅提供了详细的数学模型和理论分析,还通过Python代码实现了模型的具体计算和可视化展示,使得读者能够更好地理解和复现研究结果。此外,文章还探讨了特殊情况下的解法,并提供了经济学解释,帮助读者深入理解风险厌恶行为在库存决策中的特殊影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值