From : https://leetcode.com/problems/trapping-rain-water/
Given n non-negative integers representing an elevation map where the width of each bar is 1, compute how much water it is able to trap after raining.
For example,
Given [0,1,0,2,1,0,1,3,2,1,2,1], return 6.

The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In this case, 6 units of rain water (blue section) are being trapped. Thanks Marcos for contributing this image!
Hide Similar Problems
solution 1:
1.先找到最大处;
2.从左端到最高处(这时右边一定被挡住了),如果左边可以挡住(左边有更高的地方),那么当前位置就可以trap water;
3.从右边到最高处,同上。
class Solution {
public:
int trap(vector<int>& height) {
int maxP = 0, len = height.size(), h = 0, water = 0;
if(!len) return 0;
for(int i=0; i<len; ++i) {
if(h < height[i]) {
maxP = i;
h = height[i];
}
}
h = height[0];
for(int i=1; i<maxP; ++i) {
int hi = height[i];
hi > h ? h = hi : water += h-hi;
}
h = height[len-1];
for(int i=len-2; i>maxP; --i) {
int hi = height[i];
hi > h ? h = hi : water += h-hi;
}
return water;
}
};
Solution 2:
对上面方法简化,双指针;从两端开始,右边更高,那么只要左边能被挡住,就能trap water; 反之亦然。
class Solution {
public:
int trap(vector<int>& height) {
int left = 0, right = height.size()-1, water = 0;
while(left < right) {
int lv = height[left], rv = height[right];
if(lv > rv) {
for(right = right-1; right > left && height[right] < rv; --right) {
water += rv-height[right];
}
} else {
for(left=left+1; left < right && height[left] < lv; ++left) {
water += lv-height[left];
}
}
}
return water;
}
};
本文介绍了一种计算降雨后地形中积水总量的算法。通过找出地形中的最高点,并分别从左右两侧进行扫描,累计可积水区域的高度差来计算总的积水体积。提供两种实现方案:一种基于两次遍历的方法,另一种采用双指针简化处理。
380

被折叠的 条评论
为什么被折叠?



