Neural Networks and Deep Learning 学习笔记(十二)

本文通过展示样本标签和图像,验证了数据集的质量,并检查各类别数据是否均衡分布。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Problem 2

Let’s verify that the data still looks good. Displaying a sample of the labels and images from the ndarray. Hint: you can use matplotlib.pyplot.

import matplotlib as mpl

set_filename = train_folders[1] + '.pickle'


try:
    with open(set_filename, 'rb') as f:
        data = pickle.load(f)
except Exception as e:
    print('Unable to read data from', set_filename, ':', e)

data_small = data[::500]
for x in data_small:
    plt.imshow(x, cmap=mpl.cm.gray_r)
    plt.show()

Problem 3

Another check: we expect the data to be balanced across classes. Verify that.

for num in range(10): 
    set_filename = train_folders[num] + '.pickle'
    try:
        with open(set_filename, 'rb') as f:
            data = pickle.load(f)
    except Exception as e:
        print('Unable to read data from', set_filename, ':', e)
    print(data.shape[0])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值