codeforces Round #264(div2) E解题报告

本文介绍了一种在树形结构中进行查询与更新的操作方法,包括寻找满足特定条件的节点和更新节点值。通过DFS遍历实现高效处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

E. Caisa and Tree
time limit per test
10 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Caisa is now at home and his son has a simple task for him.

Given a rooted tree with n vertices, numbered from 1 to n (vertex 1 is the root). Each vertex of the tree has a value. You should answer qqueries. Each query is one of the following:

  • Format of the query is "1 v". Let's write out the sequence of vertices along the path from the root to vertex vu1, u2, ..., uk(u1 = 1; uk = v). You need to output such a vertex ui that gcd(value of ui, value of v) > 1 and i < k. If there are several possible vertices ui pick the one with maximum value of i. If there is no such vertex output -1.
  • Format of the query is "2 v w". You must change the value of vertex v to w.

You are given all the queries, help Caisa to solve the problem.

Input

The first line contains two space-separated integers nq (1 ≤ n, q ≤ 105).

The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 2·106), where ai represent the value of node i.

Each of the next n - 1 lines contains two integers xi and yi (1 ≤ xi, yi ≤ nxi ≠ yi), denoting the edge of the tree between vertices xi and yi.

Each of the next q lines contains a query in the format that is given above. For each query the following inequalities hold: 1 ≤ v ≤ n and 1 ≤ w ≤ 2·106Note that: there are no more than 50 queries that changes the value of a vertex.

Output

For each query of the first type output the result of the query.

Sample test(s)
input
4 6
10 8 4 3
1 2
2 3
3 4
1 1
1 2
1 3
1 4
2 1 9
1 4
output
-1
1
2
-1
1
Note

gcd(x, y) is greatest common divisor of two integers x and y.

题目大意:

给出一个总节点数量为n的树,每个节点有权值,进行q次操作,每次操作有两种选项:

       1. 询问节点v到root之间的路径上的各个节点,求满足条件 gcd(val[i], val[v]) > 1 的 距离v最近的节点的下标。

       2. 将节点v的值求改为w。

解法:

时间限制为10s,给的好宽松,直接暴力dfs过。

代码:

#include <cstdio>
#include <vector>
#define N_max 123456

using namespace std;

int  n, m, ans;
int  val[N_max], fa[N_max];
vector <int>  G[N_max];

int gcd(int a, int b) {
	return b ? gcd(b, a%b) : a;
}

void build(int v, int fav) {
	fa[v] = fav;

	for (int i = 0; i < G[v].size(); i++)
		if (G[v][i] != fav) {
			fa[G[v][i]] = v;
			build(G[v][i], v);
		}
}

void addedge(int x, int y) {
	G[x].push_back(y);
}

void init() {
	scanf("%d%d", &n, &m);
	for (int i = 1; i <= n; i++)  scanf("%d", &val[i]);

	for (int i = 1; i <= n-1; i++) {
		int x, y;
		
		scanf("%d%d", &x, &y);
		addedge(x, y);
		addedge(y, x);
	}

	build(1, 0);
}

int query(int v) {
	int w=val[v];

	v = fa[v];
	while (v) {
		if (gcd(val[v], w) > 1)
			return v;

		v = fa[v];
	}

	return -1;
}

void solve() {
	for (int i = 1; i <= m; i++) {
		int tmp, v, w;

		scanf("%d", &tmp);

		if (tmp == 1) {
			scanf("%d", &v);
			printf("%d\n", query(v));
		}
		else {
			scanf("%d%d", &v, &w);
			val[v] = w;
		}
	}
}

int main() {
	init();
	solve();
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值