python机器学习的开发流程

本文介绍了Python机器学习的标准开发流程,包括获取数据、数据建模、数据清洗、特征工程、模型选择、模型评估、算法调优和预测。在案例中,通过KNN算法预测年收入是否超过50K美元,详细讲解了数据转换和特征处理的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

标准机器学习的开发编程流程

关注公众号“轻松学编程”了解更多。

一、流程

标准机器学习的开发编程流程:

1、获取数据(爬虫、数据加载、业务部门获取)

2、数据建模(摘选样本数据(特征、目标))

3、数据清洗(异常值检测和过滤)

4、特征工程(归一化处理:提高算法模型的精度)

​ 归一化目的:使得每种特征数据的量级(权重)保持大致一致

​ 归一化方法(常用):1.普通归一化处理 2. 区归一化 处理 3.使用函数

5、模型选择(分类、回归)

6、模型评估(打分,分类边界图,残差直方图)

7、算法调优(调整模型对象的参数值)

8、绘图

注意:以下命令都是在浏览器中输入。  
cmd命令窗口输入:jupyter notebook  
打开浏览器输入网址http://localhost:8888/ 

二、预测年收入是否大于50K美元

需求:读取adult.txt文件,最后一列是年收入,并使用KNN算法训练模型,然后使用模型预测一个人的年收入是否大于50 。

说明:获取年龄、教育程度、职位、每周工作时间作为机器学习数据 获取薪水作为对应结果 。

1、导包

import pandas as pd
import numpy as np
import ma
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东木月

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值